A proof of the inf-sup condition for the Stokes equations on Lipschitz domains

被引:38
作者
Bramble, JH [1 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
inf-sup condition; stokes equations;
D O I
10.1142/S0218202503002544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present a rather simple proof of an inequality of Necas(9) which is equivalent to the inf-sup condition. This inequality is fundamental in the study of the Stokes equations. The boundary of the domain is only assumed to be Lipschitz.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 10 条
[1]  
[Anonymous], SERIES COMPREHENSIVE
[2]  
BERNARDI C, 1979, THESIS U PARIS
[3]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[4]  
FISCHERA G, 1950, ANN SCUOLA NORMALE S, V3
[5]  
Girault V., 1986, SPRINGER SERIES COMP, V5
[6]  
Gobert J., 1962, Bull. Soc. Roy. Sci. Liege, V31, P182
[7]  
Ladyzhenskaia OA., 1969, MATH THEORY VISCOUS
[8]  
Neas J., 1967, METHODES DIRECTES TH
[9]  
NITSCHE JA, 1981, RAIRO-ANAL NUMER-NUM, V15, P237
[10]  
Temam R., 1977, STUDIES MATH ITS APP, V2