Logistic Regression Ensemble for Predicting Customer Defection with Very Large Sample Size
被引:8
|
作者:
Kuswanto, Heri
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS Sukolilo, Surabaya 60111, IndonesiaInst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
Kuswanto, Heri
[1
]
Asfihani, Ayu
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS Sukolilo, Surabaya 60111, IndonesiaInst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
Asfihani, Ayu
[1
]
Sarumaha, Yogi
论文数: 0引用数: 0
h-index: 0
机构:
Inst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS Sukolilo, Surabaya 60111, IndonesiaInst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
Sarumaha, Yogi
[1
]
Ohwada, Hayato
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Grad Sch Sci & Technol, Dept Ind Adm, Noda, Chiba 278, JapanInst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
Ohwada, Hayato
[2
]
机构:
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
[2] Tokyo Univ Sci, Grad Sch Sci & Technol, Dept Ind Adm, Noda, Chiba 278, Japan
来源:
THIRD INFORMATION SYSTEMS INTERNATIONAL CONFERENCE 2015
|
2015年
/
72卷
关键词:
ensemble;
logistic regression;
classification;
high dimensional data;
machine learning;
D O I:
10.1016/j.procs.2015.12.108
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Predicting customer defection is an important subject for companies producing cloud based software. The studied company sell three products (High, Medium and Low Price), in which the consumer has choice to defect or retain the product after certain period of time. The fact that the company collected very large dataset leads to inapplicability of standard statistical models due to the curse of dimensionality. Parametric statistical models will tend to produce very big standard error which may lead to inaccurate prediction results. This research examines a machine learning approach developed for high dimensional data namely logistic regression ensemble (LORENS). Using computational approaches, LORENS has prediction ability as good as standard logistic regression model i. e. between 66% to 77% prediction accuracy. In this case, LORENS is preferable as it is more reliable and free of assumptions. (C) 2015 The Authors. Published by Elsevier B.V.
机构:
University of Cincinnati Medical Centre, Cincinnati
Center for Genome Information Department of Environmental Health, University of Cincinnati Medical Centre, Cincinnati, 45267, OHUniversity of Cincinnati Medical Centre, Cincinnati
Khorshed Alam M.
Bhaskara Rao M.
论文数: 0引用数: 0
h-index: 0
机构:
University of Cincinnati Medical Centre, Cincinnati
Center for Genome Information Department of Environmental Health, University of Cincinnati Medical Centre, Cincinnati, 45267, OHUniversity of Cincinnati Medical Centre, Cincinnati
Bhaskara Rao M.
Cheng F.-C.
论文数: 0引用数: 0
h-index: 0
机构:
North Dakota State University, Fargo
Department of Statistics, North Dakota State University, Fargo, 58102, NDUniversity of Cincinnati Medical Centre, Cincinnati
机构:
Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
Univ Connecticut, Dept Stat, Storrs, CT 06269 USAUniv New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
Wang, HaiYing
Zhu, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R ChinaUniv New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
Zhu, Rong
Ma, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Univ Georgia, Dept Stat, Athens, GA 30602 USAUniv New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
机构:
Wayne State Univ, Karmanos Canc Inst, Biostat Core, 87 E Canfield St, Detroit, MI 48201 USA
Wayne State Univ, Sch Med, Dept Oncol, Detroit, MI 48201 USAWayne State Univ, Karmanos Canc Inst, Biostat Core, 87 E Canfield St, Detroit, MI 48201 USA