CONE NONNEGATIVITY OF MOORE-PENROSE INVERSES OF UNBOUNDED GRAM OPERATORS

被引:2
作者
Kurmayya, T. [1 ]
Ramesh, G. [2 ]
机构
[1] Natl Inst Technol, Dept Math, Warangal 506004, Telangana, India
[2] IIT Hyderabad, Dept Math, Sangareddy Mandal 502285, Telangana, India
来源
ANNALS OF FUNCTIONAL ANALYSIS | 2016年 / 7卷 / 02期
关键词
Moore-Penrose inverse; unbounded Gram operator; cone; acute cone; MATRICES;
D O I
10.1215/20088752-3544417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, necessary and sufficient conditions for the cone nonnegativity of Moore-Penrose inverses of unbounded Gram operators are derived. These conditions include statements on acuteness of certain closed convex cones in infinite-dimensional real Hilbert spaces.
引用
收藏
页码:338 / 347
页数:10
相关论文
共 14 条
[1]  
Ben-Israel A., 2003, GEN INVERSES THEORY, V15, p[340, 346]
[2]  
BERMAN A., 1994, CLASSICS APPL MATH S, V9, DOI [10.1137/1.9781611971262, DOI 10.1137/1.9781611971262]
[3]   Obtuse cones and Gram matrices with non-negative inverse [J].
Cegielski, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 335 (1-3) :167-181
[4]  
Collatz L., 1966, FUNCTIONAL ANAL NUME, P338
[5]  
Goldberg S., 1966, UNBOUNDED LINEAR OPE, P340
[6]  
Groetsch C. W., 2007, LECT NOTES MATH, V1894, P341
[7]   DIRECT ITERATIVE METHODS FOR LEAST-SQUARES SOLUTIONS TO SINGULAR OPERATOR EQUATIONS [J].
KAMMERER, WJ ;
PLEMMONS, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 49 (02) :512-526
[8]   PROJECTION METHODS FOR COMPUTING MOORE-PENROSE INVERSES OF UNBOUNDED OPERATORS [J].
Kulkarni, S. H. ;
Ramesh, G. .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (05) :647-662
[9]  
Kulkarni S. R., 2005, PREPRINT
[10]   Nonnegative Moore-Penrose inverses of gram operators [J].
Kurmayya, T. ;
Sivakumar, K. C. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) :471-476