Elucidating reaction mechanisms on quantum computers

被引:478
作者
Reiher, Markus [1 ]
Wiebe, Nathan [2 ]
Svore, Krysta M. [2 ]
Wecker, Dave [2 ]
Troyer, Matthias [2 ,3 ]
机构
[1] Swiss Fed Inst Technol, Lab Phys Chem, CH-8093 Zurich, Switzerland
[2] Microsoft Res, Stat Quantum Architectures & Computat Grp Q, Redmond, WA 98052 USA
[3] Swiss Fed Inst Technol, Theoret Phys & Stn Zurich Q, CH-8093 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
quantum computing; quantum algorithms; reaction mechanisms; CHEMISTRY; SIMULATION; SYSTEMS; HAMILTONIANS; ALGORITHMS; CATALYSIS; COFACTOR; ORBITALS; CARBON;
D O I
10.1073/pnas.1619152114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
引用
收藏
页码:7555 / 7560
页数:6
相关论文
共 50 条
[31]   Scalable Full-Stack Benchmarks for Quantum Computers [J].
Hines, Jordan ;
Proctor, Timothy .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5
[32]   Implementation of quantum walks on IBM quantum computers [J].
Acasiete, F. ;
Agostini, F. P. ;
Moqadam, J. Khatibi ;
Portugal, R. .
QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
[33]   Simulating quantum materials with digital quantum computers [J].
Bassman, Lindsay ;
Urbanek, Miroslav ;
Metcalf, Mekena ;
Carter, Jonathan ;
Kemper, Alexander F. ;
de Jong, Wibe A. .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
[34]   Implementation of quantum walks on IBM quantum computers [J].
F. Acasiete ;
F. P. Agostini ;
J. Khatibi Moqadam ;
R. Portugal .
Quantum Information Processing, 2020, 19
[35]   Implementation of quantum compression on IBM quantum computers [J].
Pivoluska, Matej ;
Plesch, Martin .
SCIENTIFIC REPORTS, 2022, 12 (01)
[36]   BIOPHYSICS Green quantum computers [J].
Scholes, Gregory D. .
NATURE PHYSICS, 2010, 6 (06) :402-403
[37]   Algorithms on ensemble quantum computers [J].
P. Oscar Boykin ;
Tal Mor ;
Vwani Roychowdhury ;
Farrokh Vatan .
Natural Computing, 2010, 9 :329-345
[38]   Quantum Computers: A Status Update [J].
Gea-Banacloche, Julio .
PROCEEDINGS OF THE IEEE, 2010, 98 (12) :1983-1985
[39]   Algorithms on ensemble quantum computers [J].
Boykin, P. Oscar ;
Mor, Tal ;
Roychowdhury, Vwani ;
Vatan, Farrokh .
NATURAL COMPUTING, 2010, 9 (02) :329-345
[40]   Quantum Telecloning on NISQ Computers [J].
Pelofske, Elijah ;
Bartschi, Andreas ;
Garcia, Bryan ;
Kiefer, Boris ;
Eidenbenz, Stephan .
2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, :605-616