Elucidating reaction mechanisms on quantum computers

被引:433
作者
Reiher, Markus [1 ]
Wiebe, Nathan [2 ]
Svore, Krysta M. [2 ]
Wecker, Dave [2 ]
Troyer, Matthias [2 ,3 ]
机构
[1] Swiss Fed Inst Technol, Lab Phys Chem, CH-8093 Zurich, Switzerland
[2] Microsoft Res, Stat Quantum Architectures & Computat Grp Q, Redmond, WA 98052 USA
[3] Swiss Fed Inst Technol, Theoret Phys & Stn Zurich Q, CH-8093 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
quantum computing; quantum algorithms; reaction mechanisms; CHEMISTRY; SIMULATION; SYSTEMS; HAMILTONIANS; ALGORITHMS; CATALYSIS; COFACTOR; ORBITALS; CARBON;
D O I
10.1073/pnas.1619152114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
引用
收藏
页码:7555 / 7560
页数:6
相关论文
共 50 条
  • [21] Quantum Speedup and Mathematical Solutions of Implementing Bio-Molecular Solutions for the Independent Set Problem on IBM Quantum Computers
    Chang, Weng-Long
    Chen, Ju-Chin
    Chung, Wen-Yu
    Hsiao, Chun-Yuan
    Wong, Renata
    Vasilakos, Athanasios V.
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2021, 20 (03) : 354 - 376
  • [22] Benchmarking quantum computers
    Proctor, Timothy
    Young, Kevin
    Baczewski, Andrew D.
    Blume-Kohout, Robin
    [J]. NATURE REVIEWS PHYSICS, 2025, 7 (02) : 105 - 118
  • [23] Relativistic quantum chemistry on quantum computers
    Veis, Libor
    Visnak, Jakub
    Fleig, Timo
    Knecht, Stefan
    Saue, Trond
    Visscher, Lucas
    Pittner, Jiri
    [J]. PHYSICAL REVIEW A, 2012, 85 (03):
  • [24] Localized Quantum Chemistry on Quantum Computers
    Otten, Matthew
    Hermes, Matthew R.
    Pandharkar, Riddhish
    Alexeev, Yuri
    Gray, Stephen K.
    Gagliardi, Laura
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (12) : 7205 - 7217
  • [25] Symmetry Groups for the Decomposition of Reversible Computers, Quantum Computers, and Computers in between
    De Vos, Alexis
    De Baerdemacker, Stijn
    [J]. SYMMETRY-BASEL, 2011, 3 (02): : 305 - 324
  • [26] Advances in Modeling of Noisy Quantum Computers: Spin Qubits in Semiconductor Quantum Dots
    Costa, Davide
    Simoni, Mario
    Piccinini, Gianluca
    Graziano, Mariagrazia
    [J]. IEEE ACCESS, 2023, 11 : 98875 - 98913
  • [27] Computing Free Energies with Fluctuation Relations on Quantum Computers
    Oftelie, Lindsay Bassman
    Klymko, Katherine
    Liu, Diyi
    Tubman, Norm M.
    de Jong, Wibe A.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 129 (13)
  • [28] Algorithm for the solution of the Dirac equation on digital quantum computers
    Fillion-Gourdeau, Francois
    MacLean, Steve
    Laflamme, Raymond
    [J]. PHYSICAL REVIEW A, 2017, 95 (04)
  • [29] Psitrum: An open source simulator for universal quantum computers
    Alghadeer, Mohammed
    Aldawsari, Eid
    Selvarajan, Raja
    Alutaibi, Khaled
    Kais, Sabre
    Alharbi, Fahhad H.
    [J]. IET QUANTUM COMMUNICATION, 2024, : 586 - 600
  • [30] Scalable Full-Stack Benchmarks for Quantum Computers
    Hines, Jordan
    Proctor, Timothy
    [J]. IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5