Changes in polar amplification in response to increasing warming in CMIP6

被引:26
作者
Cai, Shenlin [1 ]
Hsu, Pang-Chi [1 ]
Liu, Fei [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Earth Syst Modeling & Climate Dynam Res Ctr, Nanjing, Peoples R China
[2] Sun Yat Sen Univ, Minist Educ, Sch Atmospher Sci, Key Lab Trop Atmosphere Ocean Syst, Guangzhou, Peoples R China
[3] Southern Marine Sci & Engn Guangdong Lab, Zhuhai, Peoples R China
基金
中国国家自然科学基金;
关键词
Arctic amplification; Antarctic amplification; Radiative kernel; CMIP6; Global warming; RADIATIVE FEEDBACKS; CLIMATE-CHANGE; SEA-ICE;
D O I
10.1016/j.aosl.2021.100043
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The climate in polar regions has experienced an obvious warming amplification due to global warming. In this study, the changes in polar amplification are analyzed in response to feedback mechanisms (including Planck, lapse rate, cloud, water vapor, albedo feedback, CO2 radiative forcing, ocean heat uptake, and atmospheric heat transport) under three warming scenarios in CMIP6-namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5. The results show that, by quantifying the warming contribution of different feedback mechanisms to surface air temperature with the "radiative kernel" method, Arctic amplification (AA) is stronger than Antarctic amplification (ANA), mostly resulting from the lapse rate feedback, followed by the albedo and Planck feedbacks. Furthermore, ocean heat uptake causes stronger polar warming in winter than in summer. During winter, the lapse rate feedback causes a larger AA than ANA. The intermodel spread for both AA and ANA decrease with increasing strength of global warming from SSP1-2.6 to SSP5-8.5, and the dominant mechanisms are the Planck, lapse rate, albedo, and ocean heat uptake feedbacks. These findings help to enhance our understanding of polar regions' responses to different strengths of global warming.
引用
收藏
页数:6
相关论文
共 44 条
[1]   Polar amplification: is atmospheric heat transport important? [J].
Alexeev, Vladimir A. ;
Jackson, Craig H. .
CLIMATE DYNAMICS, 2013, 41 (02) :533-547
[2]   Clouds damp the radiative impacts of polar sea ice loss [J].
Alkama, Ramdane ;
Taylor, Patrick C. ;
Garcia-San Martin, Lorea ;
Douville, Herve ;
Duveiller, Gregory ;
Forzieri, Giovanni ;
Swingedouw, Didier ;
Cescatti, Alessandro .
CRYOSPHERE, 2020, 14 (08) :2673-2686
[3]  
[Anonymous], 2014, CLIM CHANG SYNTH REP, P50
[4]  
Arrhenius S., 1896, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, V41, P237, DOI DOI 10.1080/14786449608620846
[5]   The changing seasonal climate in the Arctic [J].
Bintanja, R. ;
van der Linden, E. C. .
SCIENTIFIC REPORTS, 2013, 3
[6]   Boundary layer stability and Arctic climate change: a feedback study using EC-Earth [J].
Bintanja, R. ;
van der Linden, E. C. ;
Hazeleger, W. .
CLIMATE DYNAMICS, 2012, 39 (11) :2659-2673
[7]   The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3) [J].
Collins, William D. ;
Rasch, Philip J. ;
Boville, Byron A. ;
Hack, James J. ;
McCaa, James R. ;
Williamson, David L. ;
Briegleb, Bruce P. ;
Bitz, Cecilia M. ;
Lin, Shian-Jiann ;
Zhang, Minghua .
JOURNAL OF CLIMATE, 2006, 19 (11) :2144-2161
[8]   Spatial Patterns of Modeled Climate Feedback and Contributions to Temperature Response and Polar Amplification [J].
Crook, Julia A. ;
Forster, Piers M. ;
Stuber, Nicola .
JOURNAL OF CLIMATE, 2011, 24 (14) :3575-3592
[9]   Arctic amplification is caused by sea-ice loss under increasing CO2 [J].
Dai, Aiguo ;
Luo, Dehai ;
Song, Mirong ;
Liu, Jiping .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Robust Arctic warming caused by projected Antarctic sea ice loss [J].
England, M. R. ;
Polvani, L. M. ;
Sun, L. .
ENVIRONMENTAL RESEARCH LETTERS, 2020, 15 (10)