Optical scattering in electrospun poly(ε-caprolactone) tissue scaffolds

被引:4
|
作者
Park, ChangKyoo [1 ]
Choi, Hae Woon [2 ]
Lee, Carol H. [3 ]
Lannutti, John J. [4 ]
Farson, Dave F. [4 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[2] Keimyung Univ, Dept Mech & Automot Engn, Taegu 704701, South Korea
[3] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
femtosecond laser; polymer; electrospun fiber; attenuation; scattering; FEMTOSECOND LASER-ABLATION; ABSORPTION-COEFFICIENTS; DIFFUSE-REFLECTANCE; QUANTITATIVE-DETERMINATION;
D O I
10.2351/1.4870675
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Optical scattering in electrospun poly(epsilon-caprolactone) (ES-PCL) nanofibers was studied. Femtosecond laser beams with wavelengths of 775 and 387.5 nm were directed onto PCL nanofiber meshes of different thicknesses, and the reflection and transmission were measured by using an integrating sphere. Meshes were prepared by electrospinning PCL in acetone and dichloromethane (DCM). The absorption and scattering coefficients of the samples were calculated using a three-flux scattering approximation. The PCL/acetone meshes had finer fibers, smaller pore size, and 50% larger scattering coefficients than the PCL/DCM meshes. In addition, somewhat higher scattering coefficients were measured at shorter wavelength in both PCL/Ace and PCL/DCM nanofibers. However, in all cases, scattering coefficients were 15 to 30 times the absorption coefficients; thus, scattering was the dominant factor in optical attenuation in both types of meshes and at both wavelengths. (C) 2014 Laser Institute of America.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) nanofibrous scaffolds for retinal tissue engineering
    Chen, Honglin
    Fan, Xianqun
    Xia, Jing
    Chen, Ping
    Zhou, Xiaojian
    Huang, Jin
    Yu, Jiahui
    Gu, Ping
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2011, 6 : 453 - 461
  • [2] Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering
    Ghasemi-Mobarakeh, Laleh
    Prabhakaran, Molamma P.
    Morshed, Mohammad
    Nasr-Esfahani, Mohammad-Hossein
    Ramakrishna, Seeram
    BIOMATERIALS, 2008, 29 (34) : 4532 - 4539
  • [3] Advances in Electrospun Poly(ε-caprolactone)-Based Nanofibrous Scaffolds for Tissue Engineering
    Robles, Karla N.
    Zahra, Fatima tuz
    Mu, Richard
    Giorgio, Todd
    POLYMERS, 2024, 16 (20)
  • [4] Electrospun bioactive composite scaffolds of hydroxyapatite/poly(ε-caprolactone) for bone tissue engineering
    Li Lingli
    Li Guang
    Jiang Jianming
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON ADVANCED FIBERS AND POLYMER MATERIALS, VOLS 1 AND 2, 2009, : 1291 - 1294
  • [5] In vitro mineralization of hydroxyapatite on electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous scaffolds for tissue engineering application
    Fu, ShaoZhi
    Yang, LingLin
    Fan, Juan
    Wen, QingLian
    Lin, Sheng
    Wang, BiQiong
    Chen, LanLan
    Meng, XiaoHang
    Chen, Yue
    Wu, JingBo
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2013, 107 : 167 - 173
  • [6] Biomimetic calcium phosphate coating on electrospun poly (ε-caprolactone) scaffolds for bone tissue engineering
    Yang, F.
    Wolke, J. G. C.
    Jansen, J. A.
    CHEMICAL ENGINEERING JOURNAL, 2008, 137 (01) : 154 - 161
  • [7] Applications of Poly(caprolactone)-Based Nanofibre Electrospun Scaffolds in Tissue Engineering and Regenerative Medicine
    Zhang, Wei
    Weng, Tingting
    Li, Qiong
    Jin, Ronghua
    You, Chuangang
    Wu, Pan
    Shao, Jiaming
    Xia, Sizhan
    Yang, Min
    Han, Chunmao
    Wang, Xingang
    CURRENT STEM CELL RESEARCH & THERAPY, 2021, 16 (04) : 414 - 442
  • [8] Improving myoblast differentiation on electrospun poly(ε-caprolactone) scaffolds
    Abarzua-Illanes, Phammela N.
    Padilla, Cristina
    Ramos, Andrea
    Isaacs, Mauricio
    Ramos-Grez, Jorge
    Olguin, Hugo C.
    Valenzuela, Loreto M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (08) : 2241 - 2251
  • [9] Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering
    Chen, Honglin
    Huang, Jin
    Yu, Jiahui
    Liu, Shiyuan
    Gu, Ping
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2011, 48 (01) : 13 - 19
  • [10] Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents
    Vogt, Lena
    Rivera, Laura Ramos
    Liverani, Liliana
    Piegat, Agnieszka
    El Fray, Miroslawa
    Boccaccini, Aldo R.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 103