Performance projections for ballistic graphene nanoribbon field-effect transistors

被引:210
|
作者
Liang, Gengchiau [1 ]
Neophytou, Neophytos
Nikonov, Dmitri E.
Lundstrom, Mark S.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
关键词
ballistic; bandstructure; carbon; current density; graphite; MOSFET; nanotechnology; nanowire; quantum confinement;
D O I
10.1109/TED.2007.891872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The upper limit performance potential of ballistic carbon nanoribbon MOSFETs (CNR MOSFETs) is examined. We calculate the bandstructure of nanoribbons using a single p(z)-orbital tight-binding method and evaluate the current-voltage characteristics of a nanoribbon MOSFET using a semiclassical ballistic model. We find that semiconducting ribbons. a few nanometers in width behave electronically in a manner similar to carbon nanotubes, achieving similar ON-current performance. Our calculations show that semiconducting CNR transistors can be candidates for high-mobility digital switches, with the potential to outperform the silicon MOSFET. Although wide ribbons have small bandgaps, which would increase subthreshold leakage due to band to band tunneling, their ON-current capabilities could still be attractive for certain applications.
引用
收藏
页码:677 / 682
页数:6
相关论文
共 50 条
  • [41] Highly Sensitive Electrical Detection of Sodium Ions Based on Graphene Field-Effect Transistors
    Sofue, Yasuyuki
    Ohno, Yasuhide
    Maehashi, Kenzo
    Inoue, Koichi
    Matsumoto, Kazuhiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (06)
  • [42] 3D GaN nanoarchitecture for field-effect transistors
    Fatahilah, Muhammad Fahlesa
    Strempel, Klaas
    Yu, Feng
    Vodapally, Sindhuri
    Waag, Andreas
    Wasisto, Hutomo Suryo
    MICRO AND NANO ENGINEERING, 2019, 3 : 59 - 81
  • [43] Performance of n-Type InSb and InAs Nanowire Field-Effect Transistors
    Khayer, M. Abul
    Lake, Roger K.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) : 2939 - 2945
  • [44] Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors
    Sandow, C.
    Knoch, J.
    Urban, C.
    Zhao, Q. -T.
    Mantl, S.
    SOLID-STATE ELECTRONICS, 2009, 53 (10) : 1126 - 1129
  • [45] Optimizing the fabrication process for high performance graphene field effect transistors
    Wang, Yanjie
    Huang, Bo-Chao
    Zhang, Ming
    Woo, Jason C. S.
    MICROELECTRONICS RELIABILITY, 2012, 52 (08) : 1602 - 1605
  • [46] Novel Linearly Graded Nanotube Field-Effect Transistors for Improved Analog Performance and Reduced Leakage Current
    Kumar, Rakesh
    Kumar, Jitendra
    SILICON, 2022, 14 (11) : 6271 - 6278
  • [47] Cryogenic Characteristics of Multinanoscales Field-Effect Transistors
    Liu, Yan
    Lang, Lili
    Chang, Yongwei
    Shan, Yi
    Chen, Xiaojie
    Dong, Yemin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (02) : 456 - 463
  • [48] Ultrathin CdSe nanowire field-effect transistors
    Anubhav Khandelwal
    Debdeep Jena
    James W. Grebinski
    Katherine Leigh Hull
    Masaru K. Kuno
    Journal of Electronic Materials, 2006, 35 : 170 - 172
  • [49] On the modeling and design of Schottky field-effect transistors
    Vega, RA
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (04) : 866 - 874
  • [50] Field-Effect Transistors as THz radiation detectors
    Tomaszewski, D.
    Zaborowski, M.
    Marczewski, J.
    Kucharski, K.
    Bajurko, P.
    2022 IEEE LATIN AMERICAN ELECTRON DEVICES CONFERENCE (LAEDC), 2022,