Performance projections for ballistic graphene nanoribbon field-effect transistors

被引:210
|
作者
Liang, Gengchiau [1 ]
Neophytou, Neophytos
Nikonov, Dmitri E.
Lundstrom, Mark S.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
关键词
ballistic; bandstructure; carbon; current density; graphite; MOSFET; nanotechnology; nanowire; quantum confinement;
D O I
10.1109/TED.2007.891872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The upper limit performance potential of ballistic carbon nanoribbon MOSFETs (CNR MOSFETs) is examined. We calculate the bandstructure of nanoribbons using a single p(z)-orbital tight-binding method and evaluate the current-voltage characteristics of a nanoribbon MOSFET using a semiclassical ballistic model. We find that semiconducting ribbons. a few nanometers in width behave electronically in a manner similar to carbon nanotubes, achieving similar ON-current performance. Our calculations show that semiconducting CNR transistors can be candidates for high-mobility digital switches, with the potential to outperform the silicon MOSFET. Although wide ribbons have small bandgaps, which would increase subthreshold leakage due to band to band tunneling, their ON-current capabilities could still be attractive for certain applications.
引用
收藏
页码:677 / 682
页数:6
相关论文
共 50 条
  • [31] Laser-Induced Graphene as Versatile Sensing Electrodes for Extended-Gate Field-Effect Transistors
    Na, Ye Jin
    Park, Joon
    Park, Sang-Chan
    Park, Won Gyun
    Kim, Ki-Wan
    Wang, Binghao
    Ahn, Jae-Hyuk
    IEEE SENSORS JOURNAL, 2024, 24 (16) : 25275 - 25283
  • [32] Graphene Field-Effect Transistors toward Study of Cardiac Ischemia at Early Stage
    Hlukhova, Hanna
    Kireev, Dmitry
    Offenhaeusser, Andreas
    Pustovyi, Denys
    Vitusevich, Svetlana
    ADVANCED ELECTRONIC MATERIALS, 2025, 11 (02):
  • [33] ZnO Nanowire Field-Effect Transistors
    Chang, Pai-Chun
    Lu, Jia Grace
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) : 2977 - 2987
  • [34] Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping
    Du, Yuchen
    Yang, Lingming
    Zhou, Hong
    Ye, Peide D.
    IEEE ELECTRON DEVICE LETTERS, 2016, 37 (04) : 429 - 432
  • [35] Sub-ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Field-Effect Transistors
    Clavaguera, Simon
    Carella, Alexandre
    Caillier, Laurent
    Celle, Caroline
    Pecaut, Jacques
    Lenfant, Stephane
    Vuillaume, Dominique
    Simonato, Jean-Pierre
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (24) : 4063 - 4066
  • [36] A graphene field-effect device
    Lemme, Max C.
    Echtermeyer, Tim J.
    Baus, Matthias
    Kurz, Heinrich
    IEEE ELECTRON DEVICE LETTERS, 2007, 28 (04) : 282 - 284
  • [37] Enhanced Device and Circuit-Level Performance Benchmarking of Graphene Nanoribbon Field-Effect Transistor against a Nano-MOSFET with Interconnects
    Chin, Huei Chaeng
    Lim, Cheng Siong
    Wong, Weng Soon
    Danapalasingam, Kumeresan A.
    Arora, Vijay K.
    Tan, Michael Loong Peng
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [38] New Monte Carlo simulation technique for quasi-ballistic transport in ultrasmall metal oxide semiconductor field-effect transistors
    Natori, K
    Wada, N
    Kurusu, T
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (9A): : 6463 - 6470
  • [39] Charge Transport Study of Solution-Processed Graphene/Fluoropolymer Field-Effect Transistors
    Jeon, Jun-Young
    Ha, Tae-Jun
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2016, 8 (09) : 774 - 777
  • [40] Nonvolatile memory with graphene oxide as a charge storage node in nanowire field-effect transistors
    Baek, David J.
    Seol, Myeong-Lok
    Choi, Sung-Jin
    Moon, Dong-Il
    Choi, Yang-Kyu
    APPLIED PHYSICS LETTERS, 2012, 100 (09)