Performance projections for ballistic graphene nanoribbon field-effect transistors

被引:210
|
作者
Liang, Gengchiau [1 ]
Neophytou, Neophytos
Nikonov, Dmitri E.
Lundstrom, Mark S.
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Intel Corp, Technol & Mfg Grp, Santa Clara, CA 95052 USA
关键词
ballistic; bandstructure; carbon; current density; graphite; MOSFET; nanotechnology; nanowire; quantum confinement;
D O I
10.1109/TED.2007.891872
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The upper limit performance potential of ballistic carbon nanoribbon MOSFETs (CNR MOSFETs) is examined. We calculate the bandstructure of nanoribbons using a single p(z)-orbital tight-binding method and evaluate the current-voltage characteristics of a nanoribbon MOSFET using a semiclassical ballistic model. We find that semiconducting ribbons. a few nanometers in width behave electronically in a manner similar to carbon nanotubes, achieving similar ON-current performance. Our calculations show that semiconducting CNR transistors can be candidates for high-mobility digital switches, with the potential to outperform the silicon MOSFET. Although wide ribbons have small bandgaps, which would increase subthreshold leakage due to band to band tunneling, their ON-current capabilities could still be attractive for certain applications.
引用
收藏
页码:677 / 682
页数:6
相关论文
共 50 条
  • [21] MoS2 Field-Effect Transistors With Graphene/Metal Heterocontacts
    Du, Yuchen
    Yang, Lingming
    Zhang, Jingyun
    Liu, Han
    Majumdar, Kausik
    Kirsch, Paul D.
    Ye, Peide D.
    IEEE ELECTRON DEVICE LETTERS, 2014, 35 (05) : 599 - 601
  • [22] Chemical and biological sensing applications based on graphene field-effect transistors
    Ohno, Yasuhide
    Maehashi, Kenzo
    Matsumoto, Kazuhiko
    BIOSENSORS & BIOELECTRONICS, 2010, 26 (04) : 1727 - 1730
  • [23] Enhancement of protein detection performance in field-effect transistors with polymer residue-free graphene channel
    Jung, Jin Heak
    Sohn, Il Yung
    Kim, Duck Jin
    Kim, Bo Yeong
    Fang, Mi
    Lee, Nae-Eung
    CARBON, 2013, 62 : 312 - 321
  • [24] Proposal of an Embedded Nanogap Biosensor by a Graphene Nanoribbon Field-Effect Transistor for Biological Samples Detection
    Anvarifard, Mohammad K.
    Ramezani, Zeinab
    Amiri, Iraj Sadegh
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (02):
  • [25] Ballistic current in metal-oxide-semiconductor field-effect transistors: The role of device topology
    Pourghaderi, M. Ali
    Magnus, Wim
    Soree, Bart
    Meuris, Marc
    De Meyer, Kristin
    Heyns, Marc
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
  • [26] Field-Effect Transistors Based on Single-Layer Graphene and Graphene-Derived Materials
    Simionescu, Octavian-Gabriel
    Avram, Andrei
    Adiaconita, Bianca
    Preda, Petruta
    Parvulescu, Catalin
    Nastase, Florin
    Chiriac, Eugen
    Avram, Marioara
    MICROMACHINES, 2023, 14 (06)
  • [27] Origins of Leakage Currents on Electrolyte-Gated Graphene Field-Effect Transistors
    Svetlova, Anastasia
    Kireev, Dmitry
    Beltramo, Guillermo
    Mayer, Dirk
    Offenhaeusser, Andreas
    ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (12) : 5355 - 5364
  • [28] Chemical Vapour Deposition Graphene Radio-Frequency Field-Effect Transistors
    Ma Peng
    Jin Zhi
    Guo Jian-Nan
    Pan Hong-Liang
    Liu Xin-Yu
    Ye Tian-Chun
    Wang Hong
    Wang Guan-Zhong
    CHINESE PHYSICS LETTERS, 2012, 29 (05)
  • [29] Designable peptides on graphene field-effect transistors for selective detection of odor molecules
    Homma, Chishu
    Tsukiiwa, Mirano
    Noguchi, Hironaga
    Tanaka, Masayoshi
    Okochi, Mina
    Tomizawa, Hideyuki
    Sugizaki, Yoshiaki
    Isobayashi, Atsunobu
    Hayamizu, Yuhei
    BIOSENSORS & BIOELECTRONICS, 2023, 224
  • [30] Electrical Characteristics of Field-Effect Transistors based on Chemically Synthesized Graphene Nanoribbons
    Zschieschang, Ute
    Klauk, Hagen
    Mueeller, Imke B.
    Strudwick, Andrew J.
    Hintermann, Tobias
    Schwab, Matthias G.
    Narita, Akimitsu
    Feng, Xinliang
    Mueellen, Klaus
    Weitz, R. Thomas
    ADVANCED ELECTRONIC MATERIALS, 2015, 1 (03):