PLASMA-WALL INTERACTION IN MAGNETICALLY CONFINED FUSION PLASMAS

被引:3
|
作者
Samm, U. [1 ]
机构
[1] Assoc EURATOM FZJ, Forschungszentrum Julich, Inst Energieforsch Plasmaphys, Julich, Germany
关键词
ASDEX UPGRADE; MITIGATION; TRANSPORT; EROSION; DEVICES; ITER; MIGRATION; DIVERTOR; TOKAMAK;
D O I
10.13182/FST10-A9415
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The control of wall loads in fusion devices, in particular with respect to the life time limitations of wall components due to material erosion and migration, will be decisive for the realisation of a fusion power plant operating in steady state, while in a pulsed experiment like ITER the primary goal for plasma-wall interaction is the achievement of a high availability. The article describes the grand challenges of plasma-wall interaction research along the needs for ITER and the strategies of ongoing research for further optimization of the design. Addressed are questions related to material limitations, erosion- and transport processes, tritium retention in deposited layers and transient heat loads.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 50 条
  • [1] PLASMA-WALL INTERACTION IN MAGNETICALLY CONFINED FUSIONS PLASMAS
    Samm, U.
    FUSION SCIENCE AND TECHNOLOGY, 2012, 61 (2T) : 193 - 198
  • [2] Plasma-wall interaction issues in ITER
    Janeschitz, G
    JOURNAL OF NUCLEAR MATERIALS, 2001, 290 : 1 - 11
  • [3] Plasma-wall interaction and plasma behaviour in the non-boronised all tungsten ASDEX Upgrade
    Dux, R.
    Bobkov, V.
    Herrmann, A.
    Janzer, A.
    Kallenbach, A.
    Neu, R.
    Mayer, M.
    Mueller, H. W.
    Pugno, R.
    Puetterich, T.
    Rohde, V.
    Sips, A. C. C.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 858 - 863
  • [4] Tritium plasma experiment: Parameters and potentials for fusion plasma-wall interaction studies
    Shimada, Masashi
    Kolasinski, Robert D.
    Sharpe, J. Phillip
    Causey, Rion A.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (08)
  • [5] Modelling of plasma-wall interaction and impurity transport in fusion devices and prompt deposition of tungsten as application
    Kirschner, A.
    Tskhakaya, D.
    Brezinsek, S.
    Borodin, D.
    Romazanov, J.
    Ding, R.
    Eksaeva, A.
    Linsmeier, Ch
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (01)
  • [6] PLASMA-WALL INTERACTION FACILITIES IN KOREA
    Chung, K-S
    Woo, H-J
    Cho, S-G
    Choi, Y-S
    Han, S-H
    Hong, B-G
    Hong, S-H
    Kim, H-S
    Noh, S-J
    Lho, T.
    Park, S-J
    You, H-J
    FUSION SCIENCE AND TECHNOLOGY, 2013, 63 (1T) : 16 - 20
  • [7] Fusion energy conversion in magnetically confined plasma reactors
    Dobran, Flavio
    PROGRESS IN NUCLEAR ENERGY, 2012, 60 : 89 - 116
  • [8] MAGNETICALLY CONFINED PLASMA Fusion's Eastern promise?
    Morris, William
    NATURE PHYSICS, 2013, 9 (12) : 754 - 755
  • [9] Plasma-wall interaction impact of the ITER re-baseline☆
    Pitts, R. A.
    Loarte, A.
    Wauters, T.
    Dubrov, M.
    Gribov, Y.
    Kochl, F.
    Pshenov, A.
    Zhang, Y.
    Artola, J.
    Bonnin, X.
    Chen, L.
    Lehnen, M.
    Schmid, K.
    Ding, R.
    Frerichs, H.
    Futtersack, R.
    Gong, X.
    Hagelaar, G.
    Hodille, E.
    Hobirk, J.
    Krat, S.
    Matveev, D.
    Paschalidis, K.
    Qian, J.
    Ratynskaia, S.
    Rizzi, T.
    Rozhansky, V.
    Tamain, P.
    Tolias, P.
    Zhang, L.
    Zhang, W.
    NUCLEAR MATERIALS AND ENERGY, 2025, 42
  • [10] Kinetic plasma-wall interaction using immersed boundary conditions
    Munschy, Yann
    Bourne, Emily
    Dif-Pradalier, Guilhem
    Donnel, Peter
    Ghendrih, Philippe
    Grandgirard, Virginie
    Sarazin, Yanick
    NUCLEAR FUSION, 2024, 64 (05)