The existence and the concentration behavior of normalized solutions for the L2-critical Schrodinger-Poisson system

被引:12
作者
Ye, Hongyu [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Peoples R China
关键词
L-2-critical; Normalized solutions; Mountain pass geometry; Mass concentration; Schrodinger-Poisson equation; PRESCRIBED NORM; STANDING WAVES; EQUATIONS; DYNAMICS;
D O I
10.1016/j.camwa.2017.04.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and the concentration behavior of critical points for the following functional derived from the Schrodinger-Poisson system: E(u) = 1/2 integral(R3) vertical bar del u vertical bar(2) + 1/4 integral(R3) (vertical bar x vertical bar(-1) * u(2))u(2) - 3/10 integral(R3) vertical bar u vertical bar(10/3) constrained on the L-2-spheres S(c) = {u is an element of H-1 (R-3)vertical bar vertical bar u vertical bar(2) =c} when c > c(*) = vertical bar Q vertical bar(2), where Q is up to translations, the unique positive of -Delta Q + 2/3 Q = vertical bar Q vertical bar(4/3) Q in R-3. As such constrained problem is L-2-critical, E(u) is unbounded from below on S(c) when c > c>(*) and the existence of critical points constrained on S(c) is obtained by a mountain pass argument on S(c). We show that there exists c(1) > (9/7)(3/4) c(*) such that E(u) has at least one positive critical point restricted to S(c) for c(*) < c <= c(1). As c approaches c(*) from above, we obtain that the critical point u(c) behaves like (1/vertical bar del u(c)vertical bar(2))(3/2) u(c) (1/vertical bar del u(c)vertical bar(2) (x+y(c))) approximate to (1/c(*))3/2 Q ((1/c(*))x) for some y(c) is an element of R-3. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:266 / 280
页数:15
相关论文
共 24 条
[1]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[2]  
[Anonymous], ARXIV170501331
[3]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[4]   Mean field dynamics of fermions and the time-dependent Hartree-Fock equation [J].
Bardos, C ;
Golse, F ;
Gottlieb, AD ;
Mauser, NJ .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (06) :665-683
[5]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[6]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[7]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[8]   EXISTENCE OF STEADY STATES FOR THE MAXWELL-SCHRODINGER-POISSON SYSTEM: EXPLORING THE APPLICABILITY OF THE CONCENTRATION-COMPACTNESS PRINCIPLE [J].
Catto, I. ;
Dolbeault, J. ;
Sanchez, O. ;
Soler, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (10) :1915-1938
[9]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[10]  
Gidas B., 1981, Math. Anal. Appl., V7A, P369