Experimental Analysis of Tuberculosis Classification Based on Clinical Data Using Machine Learning Techniques

被引:0
|
作者
Yugaswara, Hery [1 ]
Fathurahman, Muhamad [1 ]
Suhaeri [1 ]
机构
[1] Univ YARSI, Fac Informat Technol, Informat Dept, Jakarta 10510, Indonesia
来源
RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING (SCDM 2020) | 2020年 / 978卷
关键词
Tuberculosis; Machine learning; Classification; Early detection;
D O I
10.1007/978-3-030-36056-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The early detection of tuberculosis plays a significant rule to reduce the death rate of tuberculosis. However, the early detection of tuberculosis nowadays has a limitation such as it needs long periods of time to acquire accurate diagnosis because it includes many clinical examinations. To overcome this problem a new diagnosis schema is needed. This study evaluates the common machine learning techniques including Logistic Regression, K-Nearest Neighbour, Naive Bayes, Support Vector Machine, Random Forest, Neural Network and Linear Discriminant Analysis to diagnose tuberculosis using classification methods based on clinical data. The results show that most of machine learning techniques that use in this study have a good performance in classifying tuberculosis based clinical data. Those machine learning techniques have achieved 0.97-0.99 in testing F1-Score.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 50 条
  • [41] Comparing Methods for Multilabel Classification of Proteins Using Machine Learning Techniques
    Cerri, Ricardo
    da Silva, Renato R. O.
    de Carvalho, Andre C. P. L. F.
    ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2009, 5676 : 109 - 120
  • [42] Classification of Bugs in Cloud Computing Applications Using Machine Learning Techniques
    Tabassum, Nadia
    Namoun, Abdallah
    Alyas, Tahir
    Tufail, Ali
    Taqi, Muhammad
    Kim, Ki-Hyung
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [43] Classification of monetary and fiscal dominance regimes using machine learning techniques
    Hinterlang, Natascha
    Hollmayr, Josef
    JOURNAL OF MACROECONOMICS, 2022, 74
  • [44] Brain Pathology Classification of MR Images Using Machine Learning Techniques
    Ramaha, Nehad T. A.
    Mahmood, Ruaa M.
    Hameed, Alaa Ali
    Fitriyani, Norma Latif
    Alfian, Ganjar
    Syafrudin, Muhammad
    COMPUTERS, 2023, 12 (08)
  • [45] A Comparison of Resampling Techniques for Medical Data Using Machine Learning
    Alahmari, Fahad
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2020, 19 (01)
  • [46] Analysis of Endoscopy Video Using Machine Learning Techniques
    Saraf, Santosh S.
    Udupi, G. R.
    Hajare, Santosh D.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2012, 2 (02) : 97 - 101
  • [47] Network Traffic Classification Techniques and Comparative Analysis Using Machine Learning Algorithms
    Shafiq, Muhammad
    Yu, Xiangzhan
    Laghari, Asif Ali
    Yao, Lu
    Karn, Abin Kumar
    Abdessamia, Oudil
    2016 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2016, : 2451 - 2455
  • [48] Machine learning-based clinical decision support using laboratory data
    Cubukcu, Hikmet Can
    Topcu, Deniz Ilhan
    Yenice, Sedef
    CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2024, 62 (05) : 793 - 823
  • [49] Locally Specified CPT Soil Classification Based on Machine Learning Techniques
    Cho, Sohyun
    Kim, Han-Saem
    Kim, Hyunki
    SUSTAINABILITY, 2023, 15 (04)
  • [50] Realistic SAR Data Augmentation using Machine Learning Techniques
    Lewis, Benjamin
    DeGuchy, Omar
    Sebastian, Joseph
    Kaminski, John
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXVI, 2019, 10987