A review on pyrolysis of plastic wastes

被引:1424
作者
Sharuddin, Shafferina Dayana Anuar [1 ]
Abnisa, Faisal [1 ]
Daud, Wan Mohd Ashri Wan [1 ]
Aroua, Mohamed Kheireddine [1 ]
机构
[1] Univ Malaya, Dept Chem Engn, Fac Engn, Kuala Lumpur 50603, Malaysia
关键词
Plastic wastes; Pyrolysis; Liquid product; Fuel; Energy recovery; HIGH-DENSITY POLYETHYLENE; CATALYTIC DEGRADATION; THERMAL-DEGRADATION; FUEL-OIL; PROCESS PARAMETERS; CO-PYROLYSIS; HIGH-GRADE; POLYPROPYLENE; CRACKING; RECOVERY;
D O I
10.1016/j.enconman.2016.02.037
中图分类号
O414.1 [热力学];
学科分类号
摘要
The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental problem. The rising in plastics demand led to the depletion of petroleum as part of non-renewable fossil fuel since plastics were the petroleum-based material. Some alternatives that have been developed to manage plastic wastes were recycling and energy recovery method. However, there were some drawbacks of the recycling method as it required high labor cost for the separation process and caused water contamination that reduced the process sustainability. Due to these drawbacks, the researchers have diverted their attentions to the energy recovery method to compensate the high energy demand. Through extensive research and technology development, the plastic waste conversion to energy was developed. As petroleum was the main source of plastic manufacturing, the recovery of plastic to liquid oil through pyrolysis process had a great potential since the oil produced had high calorific value comparable with the commercial fuel. This paper reviewed the pyrolysis process for each type of plastics and the main process parameters that influenced the final end product such as oil, gaseous and char. The key parameters that were reviewed in this paper included temperatures, type of reactors, residence time, pressure, catalysts, type of fluidizing gas and its flow rate. In addition, several viewpoints to optimize the liquid oil production for each plastic were also discussed in this paper. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:308 / 326
页数:19
相关论文
共 128 条
[1]   Evaluation of pyrolysis process parameters on polypropylene degradation products [J].
Abbas-Abadi, Mehrdad Seifali ;
Haghighi, Mehdi Nekoomanesh ;
Yeganeh, Hamid ;
McDonald, Armando G. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2014, 109 :272-277
[2]   Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor [J].
Abbas-Abadi, Mehrdad Seifali ;
Haghighi, Mehdi Nekoomanesh ;
Yeganeh, Hamid .
FUEL PROCESSING TECHNOLOGY, 2013, 109 :90-95
[3]   A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil [J].
Abnisa, Faisal ;
Daud, Wan Mohd Ashri Wan .
ENERGY CONVERSION AND MANAGEMENT, 2014, 87 :71-85
[4]   Pyrolysis of Mixtures of Palm Shell and Polystyrene: An Optional Method to Produce a High-Grade of Pyrolysis Oil [J].
Abnisa, Faisal ;
Daud, W. M. A. Wan ;
Sahu, J. N. .
ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2014, 33 (03) :1026-1033
[5]   Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms [J].
Aboulkas, A. ;
El Harfi, K. ;
El Bouadili, A. .
ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (07) :1363-1369
[6]   Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts [J].
Adnan ;
Shah, Jasmin ;
Jan, Muhammad Rasul .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (05) :2494-2500
[7]   Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste [J].
Adrados, A. ;
de Marco, I. ;
Caballero, B. M. ;
Lopez-Urionabarrenechea, A. ;
Laresgoiti, M. F. ;
Torres, A. .
WASTE MANAGEMENT, 2012, 32 (05) :826-832
[8]   Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system [J].
Aguado, J. ;
Serrano, D. P. ;
San Miguel, G. ;
Castro, M. C. ;
Madrid, S. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2007, 79 (1-2) :415-423
[9]  
Aguado J., 2006, CATALYTIC UPGRADING, Vfirst
[10]   Kinetic study of polyolefin pyrolysis in a conical spouted bed reactor [J].
Aguado, R ;
Olazar, M ;
Gaisán, B ;
Prieto, R ;
Bilbao, J .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (18) :4559-4566