Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map

被引:1
|
作者
de Oliveira, Juliano A. [1 ,2 ]
de Mendonca, Hans M. J. [2 ]
da Silva, Anderson A. A. [2 ]
Leonel, Edson D. [2 ]
机构
[1] Univ Estadual Paulista UNESP, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[2] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas, Dept Fis, Campus Rio Claro,Ave 24A,1515, BR-13506900 Rio Claro, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Gauss map; Bifurcations; Scaling law; Critical exponents; DYNAMICS;
D O I
10.1007/s13538-019-00706-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The convergence to the stationary state is described using scaling arguments at a fold and a period doubling bifurcation in a one-dimensional Gauss map. Two procedures are used: (i) a phenomenological investigation leading to a set of critical exponents defining the universality class of the bifurcation and; (ii) analytical investigation that transforms, near the stationary state, the difference equation into an ordinary differential equation that is easily solved. The novelty of the procedure comes from the fact that it is firstly applied to the Gauss map and critical exponents for the fold bifurcations are defined.
引用
收藏
页码:923 / 927
页数:5
相关论文
共 38 条
  • [1] Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
    Juliano A. de Oliveira
    Hans M. J. de Mendonça
    Anderson A. A. da Silva
    Edson D. Leonel
    Brazilian Journal of Physics, 2019, 49 : 923 - 927
  • [2] Period-doubling bifurcations in the family of Chebyshev-Halley-type methods
    Cordero, Alicia
    Torregrosa, Juan R.
    Vindel, P.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (10) : 2061 - 2071
  • [3] Critical fluctuations and slowing down of chaos
    Das, Moupriya
    Green, Jason R.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] Period-doubling bifurcations of breathing solitons in dissipative systems
    Song, Lijun
    Wang, Hongyan
    Wu, Liang
    Li, Lu
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (01) : 86 - 88
  • [5] Prediction of period doubling bifurcations in harmonically forced memristor circuits
    Innocenti, Giacomo
    Di Marco, Mauro
    Forti, Mauro
    Tesi, Alberto
    NONLINEAR DYNAMICS, 2019, 96 (02) : 1169 - 1190
  • [6] Critical slowing down in biochemical networks with feedback
    Byrd, Tommy A.
    Erez, Amir
    Vogel, Robert M.
    Peterson, Curtis
    Vennettilli, Michael
    Altan-Bonnet, Gregoire
    Mugler, Andrew
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [7] Inverse period-doubling bifurcations determine complex structure of bursting in a one-dimensional non-autonomous map
    Han, Xiujing
    Chen, Zhenyang
    Bi, Qinsheng
    CHAOS, 2016, 26 (02)
  • [8] Critical Slowing Down Governs the Transition to Neuron Spiking
    Meisel, Christian
    Klaus, Andreas
    Kuehn, Christian
    Plenz, Dietmar
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (02)
  • [9] Critical Slowing Down Exponents of Mode Coupling Theory
    Caltagirone, F.
    Ferrari, U.
    Leuzzi, L.
    Parisi, G.
    Ricci-Tersenghi, F.
    Rizzo, T.
    PHYSICAL REVIEW LETTERS, 2012, 108 (08)
  • [10] Critical slowing down of multiatom entanglement by Rydberg blockade
    Abad, Tahereh
    Molmer, Klaus
    PHYSICAL REVIEW A, 2018, 98 (02)