Turbulence in rotating Bose-Einstein condensates

被引:17
作者
Amette Estrada, Julian [1 ,2 ]
Brachet, Marc E. [3 ,4 ,5 ,6 ]
Mininni, Pablo D. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IFIBA, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[3] PSL Res Univ, Ecole Normale Super, Lab Phys Stat, 24 Rue Lhomond, F-75005 Paris, France
[4] Sorbonne Univ, UPMC, Univ Paris 06, 24 Rue Lhomond, F-75005 Paris, France
[5] Univ Paris Diderot, Sorbonne Paris Cite, 24 Rue Lhomond, F-75005 Paris, France
[6] CNRS, 24 Rue Lhomond, F-75005 Paris, France
关键词
WAVE TURBULENCE; HELIUM;
D O I
10.1103/PhysRevA.105.063321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Since the idea of quantum turbulence was first proposed by Feynman and later realized in experiments of superfluid helium and Bose-Einstein condensates, much emphasis has been put on finding signatures that distinguish quantum turbulence from its classical counterpart. Here we show that quantum turbulence in rotating condensates is fundamentally different from the classical case. While rotating quantum turbulence develops a negative temperature state with self-organization of the kinetic energy in quantized vortices, it also displays an anisotropic dissipation mechanism and a different, non-Kolmogorovian, scaling of the energy at small scales. This scaling is compatible with Vinen turbulence and also has been found in recent simulations of condensates with multicharged vortices. An elementary explanation for the scaling is presented in terms of disorder in the vortices positions.
引用
收藏
页数:9
相关论文
共 54 条
[11]   Energy transfer in rotating turbulence [J].
Cambon, C ;
Mansour, NN ;
Godeferd, FS .
JOURNAL OF FLUID MECHANICS, 1997, 337 :303-332
[12]   Vinen turbulence via the decay of multicharged vortices in trapped atomic Bose-Einstein condensates [J].
Cidrim, A. ;
White, A. C. ;
Allen, A. J. ;
Bagnato, V. S. ;
Barenghi, C. F. .
PHYSICAL REVIEW A, 2017, 96 (02)
[13]   Spatiotemporal detection of Kelvin waves in quantum turbulence simulations [J].
Clark di Leoni, P. ;
Mininni, P. D. ;
Brachet, M. E. .
PHYSICAL REVIEW A, 2015, 92 (06)
[14]   Dual cascade and dissipation mechanisms in helical quantum turbulence [J].
Clark di Leoni, Patricio ;
Mininni, Pablo D. ;
Brachet, Marc E. .
PHYSICAL REVIEW A, 2017, 95 (05)
[15]   Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation [J].
Clyne, John ;
Mininni, Pablo ;
Norton, Alan ;
Rast, Mark .
NEW JOURNAL OF PHYSICS, 2007, 9
[16]   Observation of Tkachenko oscillations in rapidly rotating Bose-Einstein condensates [J].
Coddington, I ;
Engels, P ;
Schweikhard, V ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 2003, 91 (10) :1004021-1004024
[17]   Vortex lattices in the lowest Landau level for confined Bose-Einstein condensates [J].
Cooper, NR ;
Komineas, S ;
Read, N .
PHYSICAL REVIEW A, 2004, 70 (03) :033604-1
[18]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[19]   Phase transitions and flux-loop metastable states in rotating turbulence [J].
Di Leoni, P. Clark ;
Alexakis, A. ;
Biferale, L. ;
Buzzicotti, M. .
PHYSICAL REVIEW FLUIDS, 2020, 5 (10)
[20]   Rotating trapped Bose-Einstein condensates [J].
Fetter, A. L. .
LASER PHYSICS, 2008, 18 (01) :1-11