THE MEASURE OF DIFFUSION SKEWNESS AND KURTOSIS IN MAGNETIC RESONANCE IMAGING

被引:0
作者
Zhang, Xinzhen [1 ]
Ling, Chen [2 ]
Qi, Liqun [1 ]
Wu, Ed Xuekui [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[3] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2010年 / 6卷 / 02期
关键词
generalized diffusion tensor imaging; signal processing; skewness; kurtosis; eigenvalues; NON-GAUSSIAN DIFFUSION; TENSOR MRI; EIGENVALUES; INVARIANTS;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The diffusion tensor imaging (DTI) model is an important magnetic resonance imaging (MRI) model in biomedical engineering. It assumes that the water molecule displacement distribution is a Gaussian function. However, water movement in biological tissue is often non-Gaussian and this non-Gaussian behavior may contain useful biological and clinical information. In order to overcome this drawback, a new MRI model, the generalized diffusion tensor imaging (GDTI) model, was presented in [8]. In the GDTI model, even order tensors reflect the magnitude of the signal, while odd order tensors reflect the phase of the signal. In this paper, we propose to use the apparent skewness coefficient (ASC) value to measure the phase of non-Gaussian signals. We prove that the ASC values are invariant under rotations of co-ordinate systems. We discuss some further properties of the diffusion kurtosis tensor and present some preliminary numerical experiments for calculating the ASC values.
引用
收藏
页码:391 / 404
页数:14
相关论文
共 17 条
[1]  
[Anonymous], 1856, PHILOS T R SOC LON A, DOI DOI 10.1098/RSTL.1856.0022
[2]  
[Anonymous], 1998, USING ALGEBRAIC GEOM, DOI DOI 10.1007/978-1-4757-6911-1
[3]   Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI [J].
Basser, Peter J. ;
Pajevic, Sinisa .
SIGNAL PROCESSING, 2007, 87 (02) :220-236
[4]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[5]   Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review [J].
Basser, PJ ;
Jones, DK .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :456-467
[6]   ESTIMATION OF THE EFFECTIVE SELF-DIFFUSION TENSOR FROM THE NMR SPIN-ECHO [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1994, 103 (03) :247-254
[7]   Extreme diffusion values for non-Gaussian diffusions [J].
Han, Deren ;
Qi, Liqun ;
Wu, Ed X. .
OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (05) :703-716
[8]   Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis [J].
Hui, Edward S. ;
Cheung, Matthew M. ;
Qi, Liqun ;
Wu, Ed X. .
NEUROIMAGE, 2008, 42 (01) :122-134
[9]   Limitations of apparent diffusion coefficient-based models in characterizing non-Gaussian diffusion [J].
Liu, CL ;
Bammer, R ;
Moseley, ME .
MAGNETIC RESONANCE IN MEDICINE, 2005, 54 (02) :419-428
[10]   Characterizing non-Gaussian diffusion by using generalized diffusion tensors [J].
Liu, CL ;
Bammer, R ;
Acar, B ;
Moseley, ME .
MAGNETIC RESONANCE IN MEDICINE, 2004, 51 (05) :924-937