Antisense oligonucleotides targeting the SMN2 promoter region enhance SMN2 expression in spinal muscular atrophy cell lines and mouse model

被引:5
|
作者
Wang, Jia [1 ]
Bai, Jinli [1 ]
OuYang, Shijia [1 ]
Wang, Hong [1 ]
Jin, Yuwei [1 ]
Peng, Xiaoyin [2 ]
Ge, Xiushan [2 ]
Jiao, Hui [2 ]
Zou, Jizhen [3 ]
He, Cai [3 ]
Xiao, Ping [3 ]
Song, Fang [1 ]
Qu, Yujin [1 ]
机构
[1] Capital Inst Pediat, Dept Med Genet, 2 Ya Bao Rd, Beijing 100020, Peoples R China
[2] Childrens Hosp, Dept Neurol, Capital Inst Pediat, Beijing 100020, Peoples R China
[3] Capital Inst Pediat, Dept Pathol, Beijing 100020, Peoples R China
关键词
HISTONE DEACETYLASE; DNA METHYLATION; DISEASE SEVERITY; SURVIVAL; PROTEIN; NUSINERSEN; DISCOVERY; CHILDREN; THERAPY; PHASE-1;
D O I
10.1093/hmg/ddab350
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease caused by homozygous deletions or mutations in survival motor neuron gene 1 (SMN1). Currently, the primary therapeutic strategy for SMA is to increase the level of SMN via correcting SMN2 splicing (nusinersen and risdiplam). However, some patients with SMA do not respond to such treatments, thereby warranting a need to develop new therapeutic strategies. We have previously reported that SMN2 expression is epigenetically regulated by DNA methylation levels of the SMN2 promoter region. In the present study, we determined that methyl-CpG-binding protein 2 (MeCP2) may bind to this critical promoter region (nt-167 to 43). Antisense oligonucleotides (ASO-P1 and ASO-P2) were designed to target the key methylation sites in the SMN2 promoter region, which enhanced the overall transcription and functional protein expression levels in the SMA cell lines. These results were similar to those observed in nusinersen-treated SMA cells. Moreover, a combined treatment of ASO-P1 and ASO-NUS in SMA cell lines further increases fl-SMN2 transcript and SMN protein levels. The delivery of ASO-P1 to the central nervous system of severe SMA mice corrected the molecular, pathological, and functional phenotypes of this disease and increased survival rates. Our findings suggest that the key methylation regions in the SMN2 promoter region may be a novel therapeutic target for SMA.
引用
收藏
页码:1635 / 1650
页数:16
相关论文
共 50 条
  • [1] High Concentration or Combined Treatment of Antisense Oligonucleotides for Spinal Muscular Atrophy Perturbed SMN2 Splicing in Patient Fibroblasts
    Wijaya, Yogik Onky Silvana
    Niba, Emma Tabe Eko
    Nishio, Hisahide
    Okamoto, Kentaro
    Awano, Hiroyuki
    Saito, Toshio
    Takeshima, Yasuhiro
    Shinohara, Masakazu
    GENES, 2022, 13 (04)
  • [2] Risdiplam SMN2 splicing modulator Treatment of spinal muscular atrophy
    Chiriboga, C. A.
    DRUGS OF THE FUTURE, 2019, 44 (08) : 643 - 658
  • [3] Spinal muscular atrophy in Venezuela: quantitative analysis of SMN1 and SMN2 genes
    Yepez, Yuri
    Paradisi, Irene
    Arias, Sergio
    EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS, 2020, 21 (01)
  • [4] Intron-retained transcripts of the spinal muscular atrophy genes, SMN1 and SMN2
    Harahap, Nur Imma Fatimah
    Niba, Emma Tabe Eko
    Rochmah, Mawaddah Ar
    Wijaya, Yogik Onky Silvana
    Saito, Toshio
    Saito, Kayoko
    Awano, Hiroyuki
    Morioka, Ichiro
    Iijima, Kazumoto
    San Lai, Poh
    Matsuo, Masafumi
    Nishio, Hisahide
    Shinohara, Masakazu
    BRAIN & DEVELOPMENT, 2018, 40 (08) : 670 - 677
  • [5] Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy
    Alves, Christiano R. R.
    Ha, Leillani L.
    Yaworski, Rebecca
    Sutton, Emma R.
    Lazzarotto, Cicera R.
    Christie, Kathleen A.
    Reilly, Aoife
    Beauvais, Ariane
    Doll, Roman M.
    de la Cruz, Demitri
    Maguire, Casey A.
    Swoboda, Kathryn J.
    Tsai, Shengdar Q.
    Kothary, Rashmi
    Kleinstiver, Benjamin P.
    NATURE BIOMEDICAL ENGINEERING, 2024, 8 (02) : 118 - +
  • [6] Securinine enhances SMN2 exon 7 inclusion in spinal muscular atrophy cells
    Chen, Yu-Chia
    Chang, Jan-Gowth
    Liu, Ting-Yuan
    Jong, Yuh-Jyh
    Cheng, Wei-Lin
    Yuo, Chung-Yee
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 88 : 708 - 714
  • [7] A splicing silencer in SMN2 intron 6 is critical in spinal muscular atrophy
    Wang, Li
    Ji, Yinfeng
    Chen, Yuqing
    Bai, Jialin
    Gao, Peng
    Feng, Pengchao
    HUMAN MOLECULAR GENETICS, 2022, : 971 - 983
  • [8] Rescue of gene-expression changes in an induced mouse model of spinal muscular atrophy by an antisense oligonucleotide that promotes inclusion of SMN2 exon 7
    Staropoli, John F.
    Li, Huo
    Chun, Seung J.
    Allaire, Norm
    Cullen, Patrick
    Thai, Alice
    Fleet, Christina M.
    Hua, Yimin
    Bennett, C. Frank
    Krainer, Adrian R.
    Kerr, Doug
    McCampbell, Alexander
    Rigo, Frank
    Carulli, John P.
    GENOMICS, 2015, 105 (04) : 220 - 228
  • [9] Combination of SMN2 copy number and NAIP deletion predicts disease severity in spinal muscular atrophy
    Watibayati, Mohd Shamshudin
    Fatemeh, Hayati
    Marini, Marzuki
    Atif, Amin Baig
    Zahiruddin, Wan Mohd
    Sasongko, Teguh Haryo
    Tang, Thean Hock
    Zabidi-Hussin, Z. A. M. H.
    Nishio, Hisahide
    Zilfali, Bin Alwi
    BRAIN & DEVELOPMENT, 2009, 31 (01) : 42 - 45
  • [10] SAM68 is a physiological regulator of SMN2 splicing in spinal muscular atrophy
    Pagliarini, Vittoria
    Pelosi, Laura
    Bustamante, Maria Blaire
    Nobili, Annalisa
    Berardinelli, Maria Grazia
    D'Amelio, Marcello
    Musaro, Antonio
    Sette, Claudio
    JOURNAL OF CELL BIOLOGY, 2015, 211 (01) : 77 - 90