Conventional multipliers for homoclinic orbits

被引:10
作者
Afraimovich, V [1 ]
Liu, WS [1 ]
Young, T [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
关键词
D O I
10.1088/0951-7715/9/1/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we introduce and describe conventional multipliers, a new characteristic of homoclinic orbits of saddle-node type periodic trajectories. We prove existence and smooth dependence of conventional multipliers on the initial point. We show that multipliers of periodic trajectories arising from the homoclinic ones as a result of the saddle-node bifurcation are close to the conventional multipliers. As an application we study behavior of a circle map inside the 'Arnold tongues'.
引用
收藏
页码:115 / 136
页数:22
相关论文
共 30 条
  • [1] THE HAUSDORFF DIMENSION OF ATTRACTORS APPEARING BY SADDLE-NODE BIFURCATIONS
    Afraimovich, V. S.
    Shereshevsky, M. A.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (02): : 309 - 325
  • [2] AFRAIMOVICH VS, 1974, DOKL AKAD NAUK SSSR+, V219, P1281
  • [3] AFRAIMOVICH VS, 1995, J DYMAMICS DIFF EQ, V7, P375
  • [4] AFRAIMOVICH VS, 1974, THESIS GORKY STATE U
  • [5] AFRAIMOVICH VS, 1990, SELECTA MATH SOVIETI, V9
  • [6] [Anonymous], 1971, DIFFERENTIABLE DYNAM
  • [7] ARNOLD VI, 1994, MODERN PROBLEMS MATH, V5
  • [8] Arnold VI., 1965, Trans. Am. Math. Soc. 2nd Ser, V46, P213, DOI [10.1007/BF00275153, 10.1090/trans2/046/11]
  • [9] THE DEVILS STAIRCASE
    BAK, P
    [J]. PHYSICS TODAY, 1986, 39 (12) : 38 - 45
  • [10] CK CENTER UNSTABLE MANIFOLDS
    CHOW, SN
    LU, KN
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 : 303 - 320