Equidistribution of phase shifts in trapped scattering

被引:1
作者
Ingremeau, Maxime [1 ,2 ]
机构
[1] CNRS, Unite Mixte Rech 7501, Inst Rech Math Avancee, Math, Strasbourg, France
[2] Univ Strasbourg, Strasbourg, France
关键词
Phase shifts; scattering theory; semiclassical analysis; RESOLVENT; OPERATOR; BOUNDS;
D O I
10.4171/JST/225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider semiclassical scattering for compactly supported perturbations of the Laplacian and show equidistribution of eigenvalues of the scattering matrix at (classically) non-degenerate energy levels. The only requirement is that sets of fixed points of certain natural scattering relations have measure zero. This extends the result of [16], where the authors proved the equidistribution result under a similar assumption on fixed points but with the condition that there is no trapping.
引用
收藏
页码:1199 / 1220
页数:22
相关论文
共 29 条
[1]   Structure of the semi-classical amplitude for general scattering relations [J].
Alexandrova, I .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (10) :1505-1535
[2]  
[Anonymous], MATH THEORY SC UNPUB
[3]  
Birman M. S., 1982, TEOR MAT FIZ, V51, P44
[4]  
BIRMAN MS, 1981, ZAP NAUCHN SEM LENIN, V110, P3
[5]   The spectral density of the scattering matrix of the magnetic Schrodinger operator for high energies [J].
Bulger, Daniel ;
Pushnitski, Alexander .
JOURNAL OF SPECTRAL THEORY, 2013, 3 (04) :517-534
[6]   The Spectral Density of the Scattering Matrix for High Energies [J].
Bulger, Daniel ;
Pushnitski, Alexander .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (03) :693-704
[7]   Lower bounds for shape resonances widths of long range Schrodinger operators [J].
Burq, N .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (04) :677-735
[8]   Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II [J].
Cardoso, F ;
Vodev, G .
ANNALES HENRI POINCARE, 2002, 3 (04) :673-691
[9]  
Christiansen TJ, 2017, ANN I FOURIER, V67, P579
[10]   Quantitative Limiting Absorption Principle in the Semiclassical Limit [J].
Datchev, Kiril .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (03) :740-747