Nonuniqueness of the number-phase wigner function

被引:3
作者
Kakazu, K [1 ]
机构
[1] Univ Ryukyus, Dept Phys & Earth Sci, Okinawa 9030213, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2005年 / 113卷 / 01期
关键词
D O I
10.1143/PTP.113.215
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Employing the extended phase states, we show that six conditions analogous to Wigner's original ones cannot lead uniquely to the number-phase Wigner function. To show this fact explicitly, we propose a new example of the Wigner function satisfying all these conditions. The nonuniqueness of the number-phase Wigner function results from the 2pi-periodicity of the phase. It is also shown that the two number-phase Wigner functions obtained by several authors have an endpoint problem, which leads to an ambiguous result. Their correct integral forms are derived from those defined in the extended Fock space with negative number states.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
[41]   COHERENT STATES AND NUMBER-PHASE UNCERTAINTY RELATION [J].
CARRUTHERS, P ;
NIETO, MM .
PHYSICAL REVIEW LETTERS, 1965, 14 (11) :387-+
[42]   The Number-Phase and Position-Momentum Distribution Functions [J].
Kiyuna, Masato ;
Kakazu, Kiyotaka ;
Sakai, Eijiro .
PROGRESS OF THEORETICAL PHYSICS, 2009, 121 (02) :217-239
[43]   Number-phase uncertainty relationship for the nonlinear number-phasesqueezed state [J].
He, Rui ;
Fan, Hong-Yi .
OPTIK, 2014, 125 (10) :2426-2428
[44]   SCATTERING PROBABILITY AND NUMBER-PHASE UNCERTAINTY IN LORENTZ MICROSCOPY [J].
WOHLLEBEN, D .
JOURNAL OF APPLIED PHYSICS, 1970, 41 (03) :1344-+
[45]   NUMBER-PHASE UNCERTAINTY RELATIONS IN TERMS OF GENERALIZED ENTROPIES [J].
Rastegin, Alexey E. .
QUANTUM INFORMATION & COMPUTATION, 2012, 12 (9-10) :743-762
[46]   Number-phase uncertainty relations in terms of generalized entropies [J].
Rastegin, Alexey E. .
Quantum Information and Computation, 2012, 12 (9-10) :743-762
[47]   GENERATION OF NUMBER-PHASE MINIMUM-UNCERTAINTY STATES AND NUMBER STATES [J].
YAMAMOTO, Y ;
MACHIDA, S ;
IMOTO, N ;
KITAGAWA, M ;
BJORK, G .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1987, 4 (10) :1645-1662
[48]   Quantum phase slips and number-phase duality in disordered TiN nanostrips [J].
Schneider, I ;
Kronfeldner, K. ;
Baturina, T., I ;
Strunk, C. .
PHYSICAL REVIEW B, 2019, 99 (09)
[49]   EXPERIMENTAL-DETERMINATION OF NUMBER-PHASE UNCERTAINTY RELATIONS [J].
BECK, M ;
SMITHEY, DT ;
COOPER, J ;
RAYMER, MG .
OPTICS LETTERS, 1993, 18 (15) :1259-1261
[50]   NUMBER-PHASE FLUCTUATIONS IN 2-BAND SUPERCONDUCTORS [J].
LEGGETT, AJ .
PROGRESS OF THEORETICAL PHYSICS, 1966, 36 (05) :901-&