A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws

被引:49
|
作者
Fu, Guosheng [1 ]
Shu, Chi-Wang [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin method; Limiters; Troubled-cell indicator; High order accuracy; FINITE-ELEMENT-METHOD; HERMITE WENO SCHEMES; HIGH-ORDER SCHEMES; EFFICIENT IMPLEMENTATION; LIMITERS;
D O I
10.1016/j.jcp.2017.06.046
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a new troubled-cell indicator for the discontinuous Galerkin (DG) methods for solving hyperbolic conservation laws. This indicator can be defined on unstructured meshes for high order DG methods and depends only on data from the target cell and its immediate neighbors. It is able to identify shocks without PDE sensitive parameters to tune. Extensive one-and two-dimensional simulations on the hyperbolic systems of Euler equations indicate the good performance of this new troubled-cell indicator coupled with a simple minmod-type TVD limiter for the Runge-Kutta DG (RKDG) methods. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:305 / 327
页数:23
相关论文
共 50 条