Geometric characterizations for variational minimization solutions of the 3-body problem

被引:8
作者
Long, YM [1 ]
Zhang, SQ
机构
[1] Nankai Univ, Nankai Inst Math, Tianjin 300071, Peoples R China
[2] Chongqing Univ, Dept Appl Math, Chongqing 400044, Peoples R China
来源
ACTA MATHEMATICA SINICA-ENGLISH SERIES | 2000年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
3-body problem; restricted 3-body problem; variational minimization; equilateral triangle circular solution;
D O I
10.1007/s101140000007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that for any given positive masses the variational minimization solutions of the 3-body problem in R-3 or R-2 are precisely the planar equilateral triangle circular solutions found by J. Lagrange in 1772, and that the variational minimization solutions of the circular restricted 3-body problem in R-3 or R-2 are also planar equilateral triangle circular solutions.
引用
收藏
页码:579 / 592
页数:14
相关论文
共 18 条
[11]  
Meyer K, 1992, INTRO HAMILTONIAN SY
[12]  
P?lya, 1952, INEQUALITIES
[13]   PERIODIC-SOLUTIONS OF HAMILTONIAN SYSTEMS [J].
RABINOWITZ, PH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (02) :157-184
[14]   COLLISIONLESS PERIODIC-SOLUTIONS TO SOME 3-BODY PROBLEMS [J].
SERRA, E ;
TERRACINI, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 120 (04) :305-325
[15]  
SIEGLE C, 1971, LECT CELESTIAL MECH
[16]  
WANG JH, 1961, 3 BODY PROBLEM
[17]   PERIODIC-SOLUTIONS FOR N-BODY TYPE PROBLEMS [J].
ZELATI, VC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :477-492
[18]   A CLASS OF PERIODIC SOLUTIONS OF THE N-BODY PROBLEM [J].
Zelati, Vittorio Coti .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1989, 46 (02) :177-186