Geometric characterizations for variational minimization solutions of the 3-body problem

被引:8
作者
Long, YM [1 ]
Zhang, SQ
机构
[1] Nankai Univ, Nankai Inst Math, Tianjin 300071, Peoples R China
[2] Chongqing Univ, Dept Appl Math, Chongqing 400044, Peoples R China
来源
ACTA MATHEMATICA SINICA-ENGLISH SERIES | 2000年 / 16卷 / 04期
基金
中国国家自然科学基金;
关键词
3-body problem; restricted 3-body problem; variational minimization; equilateral triangle circular solution;
D O I
10.1007/s101140000007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that for any given positive masses the variational minimization solutions of the 3-body problem in R-3 or R-2 are precisely the planar equilateral triangle circular solutions found by J. Lagrange in 1772, and that the variational minimization solutions of the circular restricted 3-body problem in R-3 or R-2 are also planar equilateral triangle circular solutions.
引用
收藏
页码:579 / 592
页数:14
相关论文
共 18 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
Ambrosetti A., 1993, Periodic solutions of singular Lagrangian Systems
[3]  
[Anonymous], 1941, PRINCETON MATH SERIE
[4]  
ARNOLD VI, 1985, DYNAMICAL SYSTEMS, V3
[5]   SYMMETRIES AND NONCOLLISION CLOSED ORBITS FOR PLANAR N-BODY-TYPE PROBLEMS [J].
BESSI, U ;
ZELATI, VC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (06) :587-598
[6]  
Degiovanni M., 1988, ANN SCUOLA NORM SUPE, V15, P467
[7]  
DELLANTONIO GF, 1997, TOPOLOGICAL NONLINEA, V2, P1
[8]  
EULER L, 1767, NOVI COMM ACAD SCI I, P145
[9]   MINIMIZING PROPERTY OF KEPLERIAN ORBITS [J].
GORDON, WB .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (05) :961-971
[10]  
LAGRANGE J, 1983, OUVRES, V3, P229