Modelling of fully-coupled CO2 diffusion and adsorption-induced coal matrix swelling

被引:36
|
作者
Sampath, K. H. S. M. [1 ]
Perera, M. S. A. [1 ]
Matthai, S. K. [1 ]
Ranjith, P. G. [2 ]
Dong-yin, Li [3 ]
机构
[1] Univ Melbourne, Dept Infrastruct Engn, Room B 209,Engn Block B,Bldg 175,Grattan St, Parkville, Vic 3010, Australia
[2] Monash Univ, Dept Civil Engn, Clayton Campus, Clayton, Vic 3800, Australia
[3] Henan Polytech Univ, Sch Energy Sci & Engn, Jiaozuo 454000, Henan, Peoples R China
关键词
Coal matrix; CO2; diffusion; adsorption; Matrix swelling; SUPERCRITICAL CO2; GAS-FLOW; QUANTITATIVE-EVALUATION; METHANE; PERMEABILITY; SORPTION; STORAGE; DEFORMATION; DESORPTION; SHRINKAGE;
D O I
10.1016/j.fuel.2019.116486
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Multiple CO2 diffusion mechanisms coexist in the coal matrix in certain pore pressure ranges and the subsequent CO2 adsorption induced-matrix swelling alters the hydro-mechanical properties of the seam. We investigate the CO2 diffusion/adsorption-induced swelling behaviour of the coal matrix, through a fully-coupled gas flow - adsorption - coal deformation model. Besides the constant diffusion coefficient-based approach, the multiple diffusion mechanisms including slip flow and Knudsen diffusion are further modelled with a theoretically-extended diffusion approach. The two models are validated with the CO2 adsorption and volumetric swelling data to confirm the models' reliability on simulating the CO2 diffusion/adsorption-induced swelling behaviour and to guarantee their time-dependent solving performance. The spatial and temporal analysis demonstrates that a larger fraction of matrix swelling occurs well before the coal matrix reaches its pressure equilibrium, confirming the fact that adsorption induced-swelling starts immediately with the coal-CO2 interaction. The sensitivity analysis concludes that although the maximum adsorbed amount of CO2 at the pressure equilibrium increases with the increasing applied CO2 boundary pressure, the increment is not particularly linear, but gradually reaching a plateau at higher applied boundary pressures. The CO2 adsorption and the coal matrix swelling are highly sensitive to the Langmuir sorption constant and to the Langmuir volumetric strain constant, respectively, thus should be precisely determined for a given coal type - to accurately model the adsorption-swelling process. The extended diffusion approach reveals that the total flow conductance through the matrix increases moderately with the increasing pore pressure but changes substantially with the pore radius. The slip flow increases exponentially with the pore pressure at large pore sizes (i.e. r(t) >= 50 nm), in which almost 100% of contribution is provided by the slip flow mechanism at pore pressures greater than 1 MPa. In contrast, at very low pore pressures (i.e. p < 0.5 MPa), the Knudsen diffusion contributes almost 100% to the total flow conductance, irrespective of the pore size. With the decreasing pore size, the contribution from Knudsen diffusion starts to increase, confirming that the Knudsen diffusion mechanism becomes predominant at relatively smaller pore channels, even at larger pore pressure conditions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Effect of 3-D stress state on adsorption of CO2 by coal
    Hol, Sander
    Peach, Colin J.
    Spiers, Christopher J.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2012, 93 : 1 - 15
  • [32] CH4, CO2, N2 diffusion in Bowen Basin (Australia) coal: relationship between sorption kinetics of coal core and crushed coal particles
    Sander, Regina
    Connell, Luke D.
    Camilleri, Michael
    Pan, Zhejun
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 81
  • [33] Molecular simulation of CO2-CH4 competitive adsorption and induced coal swelling
    Zhang, Junfang
    Liu, Keyu
    Clennell, M. B.
    Dewhurst, D. N.
    Pervukhina, M.
    FUEL, 2015, 160 : 309 - 317
  • [34] High-pressure methane adsorption-induced coal swelling on equilibrium moisture coal samples
    Lu, Runsheng
    Peng, Suping
    Liu, Gaofeng
    Li, Bo
    Pan, Jienan
    Lin, Xiaoying
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2016, 38 (14) : 2119 - 2127
  • [35] Molecular simulation of adsorption and diffusion behavior of CO2 in pyrophyllite
    Li, Chunquan
    Liu, Shanqi
    Tian, Huiquan
    Liang, Jiaxin
    Li, Yongbing
    FUEL, 2023, 351
  • [36] Modelling of geomechanical response for coal and ground induced by CO2-ECBM recovery
    Liu, Xudong
    Sang, Shuxun
    Zhou, Xiaozhi
    Wang, Ziliang
    Niu, Qinghe
    Mondal, Debashish
    GAS SCIENCE AND ENGINEERING, 2023, 113
  • [37] Swelling and acoustic emission behaviour of unconfined and confined coal during sorption of CO2
    Majewska, Zofia
    Majewski, Stanislaw
    Zietek, Jerzy
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2013, 116 : 17 - 25
  • [38] Macromolecular rearrangement caused by CO2 adsorption in coal
    Wang, Kai
    Pan, Jienan
    Xu, Rongting
    Hou, Quanlin
    Wang, Xianglong
    Li, Jianxin
    FUEL, 2023, 349
  • [39] Effects of ethanol-mixed supercritical CO2 fluid on CO2 adsorption on coals: implications for CO2 geologic storage in coal seams
    Zhang, Dengfeng
    Hu, Zichao
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2020, 21 (03) : 274 - 286
  • [40] Micro-scale fracturing mechanisms in coal induced by adsorption of supercritical CO2
    Zhang, Yihuai
    Zhang, Zike
    Sarmadivaleh, Mohammad
    Lebedev, Maxim
    Barifcani, Ahmed
    Yu, Hongyan
    Iglauer, Stefan
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2017, 175 : 40 - 50