Compactness in Ginzburg-Landau energy by kynetic averaging

被引:1
作者
Jabin, PE [1 ]
Perthame, B [1 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75230 Paris 05, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 06期
关键词
D O I
10.1016/S0764-4442(00)01622-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Ginzburg-Landau energy for two-dimensional divergence free fields appearing in the gradient theory of phase transition for instance. We prove that, as the relaxation parameter vanishes, families of such fields with finite energy are compact in L-P(Omega) and we give some information on the limit. Our proof is based on a kinetic interpretation of the entropies which were introduced by Desimone, Kohn, Muller and Otto. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:441 / 445
页数:5
相关论文
共 13 条
[11]   Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure [J].
Perthame, B .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (10) :1055-1064
[12]  
RIVIERE T, 2000, LIMITING DOMAIN WALL
[13]  
Tadmor, 1994, J AM MATH SOC, V7, P169