Compactness in Ginzburg-Landau energy by kynetic averaging

被引:1
作者
Jabin, PE [1 ]
Perthame, B [1 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, F-75230 Paris 05, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 331卷 / 06期
关键词
D O I
10.1016/S0764-4442(00)01622-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a Ginzburg-Landau energy for two-dimensional divergence free fields appearing in the gradient theory of phase transition for instance. We prove that, as the relaxation parameter vanishes, families of such fields with finite energy are compact in L-P(Omega) and we give some information on the limit. Our proof is based on a kinetic interpretation of the entropies which were introduced by Desimone, Kohn, Muller and Otto. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:441 / 445
页数:5
相关论文
共 13 条
[1]   Line energies for gradient vector fields in the plane [J].
Ambrosio, L ;
De Lellis, C ;
Mantegazza, C .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1999, 9 (04) :327-355
[2]   On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields [J].
Aviles, P ;
Giga, Y .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :1-17
[3]  
Bethuel F., 1994, PROGR NONLINEAR DIFF
[4]  
DESIMONE A, 2000, IN PRESS P ROY SOC E
[5]  
DESIMORE A, 1999, IN PRESS P ICIAM
[6]   LP REGULARITY OF VELOCITY AVERAGES [J].
DIPERNA, RJ ;
LIONS, PL ;
MEYER, Y .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4) :271-287
[7]  
JABIN PE, UNPUB
[8]  
JIN W, 2000, IN PRESS J NONLIN SC
[9]   KINETIC FORMULATION OF THE ISENTROPIC GAS-DYNAMICS AND P-SYSTEMS [J].
LIONS, PL ;
PERTHAME, B ;
TADMOR, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (02) :415-431
[10]   A limiting case for velocity averaging [J].
Perthame, B ;
Souganidis, PE .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1998, 31 (04) :591-598