Strong solutions to the nonlinear heat equation in homogeneous Besov spaces

被引:10
作者
Miao, Changxing
Yuan, Baoquan
Zhang, Bo
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Henan Polytech Univ, Coll Math & Informat, Jiaozuo City 454000, Henan Province, Peoples R China
[3] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear heat equation; well-posedness; Littlewood-Paley trichotomy; Besov spaces;
D O I
10.1016/j.na.2006.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the Cauchy problem of the nonlinear heat equation in homogeneous Besov spaces B-p,r(s)(R-n) with s < 0.The nonlinear estimate is established by means of the Littlewood-Paley trichotomy and is used to prove the global well-posedness of solutions for small initial data in the homogeneous Besov space B-p,r(s) (R-n) with s = n/p - 2/b < 0. In particular, when r = infinity and the initial data phi satisfies that lambda 2/b phi(lambda x) = phi(x) for any lambda > 0, our result leads to the existence of global self-similar solutions to the problem. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1329 / 1343
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 2001, TOKYO J MATH
[2]  
Bergh J., 1976, INTERPOLATION SPACES
[3]  
Cannone M, 2004, HANDBOOK OF MATHEMATICAL FLUID DYNAMICS, VOL 3, P161
[4]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[5]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[6]  
GALLAGHER I, 2002, JOURN EQ DER PART FO
[7]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[8]  
Hieber M, 1997, COMMUN PART DIFF EQ, V22, P1647
[9]  
Lemarie-Rieusset P., 2002, RECENT DEV NAVIER ST
[10]  
LI T, 1988, J PARTIAL DIFFERENTI, V1, P1