Rangeland development of the Mu Us sandy land in semiarid China:: An analysis using landsat and NOAA remote sensing data

被引:90
作者
Runnström, MC [1 ]
机构
[1] Lund Univ, Dept Phys Geog & Ecosyst Anal, S-22362 Lund, Sweden
关键词
land degradation; desertification; remote sensing; Landsat TM; NOAA NDVI; Mu Us; Ordos; Inner Mongolia; China;
D O I
10.1002/ldr.545
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Degradation of the dry semiarid ecosystems in the Mu Us Sandy Land of north central China was explored using high-resolution satellite images from 1978, 1987 and 1996. This study monitored both changes in grassland biomass production and reclamation activities to detect the nature and scale of land degradation since major economic reforms were introduced in 1978. The position of the high-resolution images within the vegetation cycles was inspected from National Oceanographic and Atmospheric Administration (NOAA) NDVI images at 10-day repetition and seasonal precipitation patterns. A model was developed to categorize changes in the vegetation signal activity from 30 x 30 m pixels into vegetation cover development and land-use changes between 1987 and 1996. A general increase of biomass production was evident despite the rapid increase in numbers of grazing animals. This increase in biomass was confirmed by the NOAA time series, which also revealed annual variability related to the amount and pattern of the seasonal rains. Rangeland conversion to farmland was detected, and this process has increased the area of cultivation almost fivefold. The classified area of cultivation corresponds with reported statistical records, also showing that irrigation features in virtually 100 per cent of the sown area. Signs of declining biological production, indicating land degradation processes, are few. Biomass production has increased, with a gain in the economic output from both crop and animal production. The early start of active measures to halt desertification has increased vegetation cover and lowered wind erosion potential and grasslands seems to be managing the high levels of grazing pressure. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:189 / 202
页数:14
相关论文
共 50 条
[1]  
[Anonymous], 1995, WHO WILL FEED CHINA
[2]  
[Anonymous], 1999, REMOTE SENSING CHANG
[3]   ESTIMATING ABSORBED PHOTOSYNTHETIC RADIATION AND LEAF-AREA INDEX FROM SPECTRAL REFLECTANCE IN WHEAT [J].
ASRAR, G ;
FUCHS, M ;
KANEMASU, ET ;
HATFIELD, JL .
AGRONOMY JOURNAL, 1984, 76 (02) :300-306
[4]   LEAF-AREA INDEX, INTERCEPTED PHOTOSYNTHETICALLY ACTIVE RADIATION, AND SPECTRAL VEGETATION INDEXES - A SENSITIVITY ANALYSIS FOR REGULAR-CLUMPED CANOPIES [J].
BEGUE, A .
REMOTE SENSING OF ENVIRONMENT, 1993, 46 (01) :45-59
[5]   On the relation between NDVI, fractional vegetation cover, and leaf area index [J].
Carlson, TN ;
Ripley, DA .
REMOTE SENSING OF ENVIRONMENT, 1997, 62 (03) :241-252
[6]   NDVI-DERIVED LAND-COVER CLASSIFICATIONS AT A GLOBAL-SCALE [J].
DEFRIES, RS ;
TOWNSHEND, JRG .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (17) :3567-3586
[7]  
FULLEN MA, 1994, AMBIO, V23, P131
[8]   Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems [J].
Gower, ST ;
Kucharik, CJ ;
Norman, JM .
REMOTE SENSING OF ENVIRONMENT, 1999, 70 (01) :29-51
[9]  
GUO HC, 1989, J APPL ECOL, V26, P787, DOI 10.2307/2403690
[10]   RADIOMETRIC RECTIFICATION - TOWARD A COMMON RADIOMETRIC RESPONSE AMONG MULTIDATE, MULTISENSOR IMAGES [J].
HALL, FG ;
STREBEL, DE ;
NICKESON, JE ;
GOETZ, SJ .
REMOTE SENSING OF ENVIRONMENT, 1991, 35 (01) :11-27