Pharmacokinetic Analysis of Peptide-Modified Nanoparticles with Engineered Physicochemical Properties in a Mouse Model of Traumatic Brain Injury

被引:12
作者
Waggoner, Lauren E. [1 ]
Madias, Marianne I. [2 ]
Hurtado, Alan A. [2 ]
Kwon, Ester J. [2 ]
机构
[1] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
nanoparticles; peptides; pharmacokinetics; surface engineering; traumatic brain injury; CORE-SHELL NANOPARTICLES; CONTROLLED CORTICAL IMPACT; SURFACE-CHARGE; TARGETED DELIVERY; PROTEIN CORONA; POLYMERIC NANOPARTICLES; CELLULAR UPTAKE; SIRNA DELIVERY; TUMOR; BARRIER;
D O I
10.1208/s12248-021-00626-5
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Peptides are used to control the pharmacokinetic profiles of nanoparticles due to their ability to influence tissue accumulation and cellular interactions. However, beyond the study of specific peptides, there is a lack of understanding of how peptide physicochemical properties affect nanoparticle pharmacokinetics, particularly in the context of traumatic brain injury (TBI). We engineered nanoparticle surfaces with peptides that possess a range of physicochemical properties and evaluated their distribution after two routes of administration: direct injection into a healthy mouse brain and systemic delivery in a mouse model of TBI. In both administration routes, we found that peptide-modified nanoparticle pharmacokinetics were influenced by the charge characteristics of the peptide. When peptide-modified nanoparticles are delivered directly into the brain, nanoparticles modified with positively charged peptides displayed restricted distribution from the injection site compared to nanoparticles modified with neutral, zwitterionic, or negatively charged peptides. After intravenous administration in a TBI mouse model, positively charged peptide-modified nanoparticles accumulated more in off-target organs, including the heart, lung, and kidneys, than zwitterionic, neutral, or negatively charged peptide-modified nanoparticles. The increase in off-target organ accumulation of positively charged peptide-modified nanoparticles was concomitant with a relative decrease in accumulation in the injured brain compared to zwitterionic, neutral, or negatively charged peptide-modified nanoparticles. Understanding how nanoparticle pharmacokinetics are influenced by the physicochemical properties of peptides presented on the nanoparticle surface is relevant to the development of nanoparticle-based TBI therapeutics and broadly applicable to nanotherapeutic design, including synthetic nanoparticles and viruses.
引用
收藏
页数:12
相关论文
共 77 条
[1]   Peptide modified nanocarriers for selective targeting of bombesin receptors [J].
Accardo, Antonella ;
Mansi, Rosalba ;
Morisco, Anna ;
Mangiapia, Gaetano ;
Paduano, Luigi ;
Tesauro, Diego ;
Radulescu, Aurel ;
Aurilio, Michela ;
Aloj, Luigi ;
Arra, Claudio ;
Morelli, Giancarlo .
MOLECULAR BIOSYSTEMS, 2010, 6 (05) :878-887
[2]   The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J].
Akinc, Akin ;
Maier, Martin A. ;
Manoharan, Muthiah ;
Fitzgerald, Kevin ;
Jayaraman, Muthusamy ;
Barros, Scott ;
Ansell, Steven ;
Du, Xinyao ;
Hope, Michael J. ;
Madden, Thomas D. ;
Mui, Barbara L. ;
Semple, Sean C. ;
Tam, Ying K. ;
Ciufolini, Marco ;
Witzigmann, Dominik ;
Kulkarni, Jayesh A. ;
van der Meel, Roy ;
Cullis, Pieter R. .
NATURE NANOTECHNOLOGY, 2019, 14 (12) :1084-1087
[3]  
Alluri H, 2018, METHODS MOL BIOL, V1717, P37, DOI 10.1007/978-1-4939-7526-6_4
[4]   Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes [J].
Alvarez-Erviti, Lydia ;
Seow, Yiqi ;
Yin, HaiFang ;
Betts, Corinne ;
Lakhal, Samira ;
Wood, Matthew J. A. .
NATURE BIOTECHNOLOGY, 2011, 29 (04) :341-U179
[5]   Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles [J].
Arvizo, Rochelle R. ;
Miranda, Oscar R. ;
Moyano, Daniel F. ;
Walden, Chad A. ;
Giri, Karuna ;
Bhattacharya, Resham ;
Robertson, J. David ;
Rotello, Vincent M. ;
Reid, Joel M. ;
Mukherjee, Priyabrata .
PLOS ONE, 2011, 6 (09)
[6]   Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond [J].
Arvizo, Rochelle R. ;
Miranda, Oscar R. ;
Thompson, Michael A. ;
Pabelick, Christina M. ;
Bhattacharya, Resham ;
Robertson, J. David ;
Rotello, Vincent M. ;
Prakash, Y. S. ;
Mukherjee, Priyabrata .
NANO LETTERS, 2010, 10 (07) :2543-2548
[7]   Doxil® - The first FDA-approved nano-drug: Lessons learned [J].
Barenholz, Yechezkel .
JOURNAL OF CONTROLLED RELEASE, 2012, 160 (02) :117-134
[8]   Nanoparticle-Based Therapeutics for Brain Injury [J].
Bharadwaj, Vimala N. ;
Nguyen, Duong T. ;
Kodibagkar, Vikram D. ;
Stabenfeldt, Sarah E. .
ADVANCED HEALTHCARE MATERIALS, 2018, 7 (01)
[9]   Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size [J].
Bharadwaj, Vimala N. ;
Lifshitz, Jonathan ;
Adelson, P. David ;
Kodibagkar, Vikram D. ;
Stabenfeldt, Sarah E. .
SCIENTIFIC REPORTS, 2016, 6
[10]   Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date [J].
Bobo, Daniel ;
Robinson, Kye J. ;
Islam, Jiaul ;
Thurecht, Kristofer J. ;
Corrie, Simon R. .
PHARMACEUTICAL RESEARCH, 2016, 33 (10) :2373-2387