Planck scale effects on the stochastic gravitational wave background generated from cosmological hadronization transition: A qualitative study

被引:19
|
作者
Khodadi, Mohsen [1 ]
Nozari, Kourosh [1 ,2 ]
Abedi, Habib [3 ]
Capozziello, Salvatore [4 ,5 ,6 ]
机构
[1] Univ Mazandaran, Fac Basic Sci, Dept Phys, POB 47416-95447, Babol Sar, Iran
[2] RIAAM, POB 55134-441, Maragha, Iran
[3] Univ Tehran, Dept Phys, North Kargar Ave, Tehran 1439955961, Iran
[4] Univ Napoli Federico II, Complesso Univ Monte St Angelo, Dipartimento Fis E Pancini, Edificio G,Via Cinthia, I-80126 Naples, Italy
[5] Complesso Univ Monte St Angelo, Sez Napoli, INFN, Edificio G,Via Cinthia, I-80126 Naples, Italy
[6] Gran Sasso Sci Inst, Viale F Crispi 7, I-67100 Laquila, Italy
关键词
PHASE-TRANSITION; PHYSICS; GUP;
D O I
10.1016/j.physletb.2018.07.010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We reconsider the stochastic gravitational wave background spectrum produced during the first order hadronization process, in presence of ultraviolet cutoffs suggested by the generalized uncertainty principle as a promising signature towards the Planck scale physics. Unlike common perception that the dynamics of QCD phase transition and its phenomenological consequences are highly influenced by the critical temperature, we find that the underlying Planck scale modifications can affect the stochastic gravitational spectrum arising from the QCD transition without a noteworthy change in the relevant critical temperature. Our investigation shows that incorporating the natural cutoffs into MIT bag equation of state and background evolution leads to a growth in the stochastic gravitational power spectrum, while the relevant redshift of the QCD era, remains unaltered. These results have double implications from the point of view of phenomenology. Firstly, it is expected to enhance the chance of detecting the stochastic gravitational signal created by such a transition in future observations. Secondly, it gives a hint on the decoding from the dynamics of QCD phase transition. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:326 / 333
页数:8
相关论文
共 50 条
  • [1] Barrow entropy and stochastic gravitational wave background generated from cosmological QCD phase transition
    Feng, Qi-Min
    Feng, Zhong-Wen
    Zhou, Xia
    Jiang, Qing-Quan
    PHYSICS LETTERS B, 2023, 838
  • [2] Gravitational wave stochastic background from cosmological particle decay
    Allen, Bruce
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [3] Direct searches for a cosmological stochastic gravitational wave background
    Lazzarini, A
    Particles, Strings, and Cosmology, 2005, 805 : 87 - 93
  • [4] Stochastic background of gravitational waves from cosmological sources
    Caprini, Chiara
    10TH INTERNATIONAL LISA SYMPOSIUM, 2015, 610
  • [5] Stochastic Gravitational Wave Background from Cosmological Neutrino-dominated Accretion Flows
    Wei, Yun-Feng
    Liu, Tong
    ASTROPHYSICAL JOURNAL, 2024, 972 (02):
  • [6] The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition
    Caprini, Chiara
    Durrer, Ruth
    Servant, Geraldine
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (12):
  • [7] Detecting circular polarisation in the stochastic gravitational-wave background from a first-order cosmological phase transition
    Ellis, John
    Fairbairn, Malcolm
    Lewicki, Marek
    Vaskonen, Ville
    Wickens, Alastair
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (10):
  • [8] Stochastic gravitational wave background generated by domain wall networks
    Gruber, D.
    Sousa, L.
    Avelino, P. P.
    PHYSICAL REVIEW D, 2024, 110 (02)
  • [9] The Stochastic Gravitational Wave Background Generated by Cosmic String Networks
    Sousa, L.
    Avelino, P. P.
    STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 391 - 393
  • [10] An upper limit on the stochastic gravitational-wave background of cosmological origin
    Abbott, B. P.
    Abbott, R.
    Acernese, F.
    Adhikari, R.
    Ajith, P.
    Allen, B.
    Allen, G.
    Alshourbagy, M.
    Amin, R. S.
    Anderson, S. B.
    Anderson, W. G.
    Antonucci, F.
    Aoudia, S.
    Arain, M. A.
    Araya, M.
    Armandula, H.
    Armor, P.
    Arun, K. G.
    Aso, Y.
    Aston, S.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P.
    Ballardin, G.
    Ballmer, S.
    Barker, C.
    Barker, D.
    Barone, F.
    Barr, B.
    Barriga, P.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Bauer, Th. S.
    Behnke, B.
    Beker, M.
    Benacquista, M.
    Betzwieser, J.
    Beyersdorf, P. T.
    Bigotta, S.
    Bilenko, I. A.
    Billingsley, G.
    Birindelli, S.
    Biswas, R.
    Bizouard, M. A.
    NATURE, 2009, 460 (7258) : 990 - 994