The dynamics in globally coupled phase oscillators with multi-peaked frequency distribution

被引:3
作者
Liu, Zijia [1 ]
Lei, Lixing [1 ]
Li, Haihong [1 ]
Yang, Junzhong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2020年 / 81卷
基金
中国国家自然科学基金;
关键词
Kuramoto model; Global coupling; Partial synchronous states; Ott-Antonsen ansatz; SYNCHRONIZATION; POPULATIONS; KURAMOTO;
D O I
10.1016/j.cnsns.2019.104997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In globally coupled phase oscillators, the natural frequency distribution plays a critical role on the synchronization. In this work, we consider globally coupled phase oscillators with a multi-peak natural frequency distribution, that is a superposition of two symmetrical bimodal Lorentzian distributions. Using Ott-Antonsen (OA) dimension reduction technique, we reduce the system from high dimension to low dimension, and investigate its dynamical behaviors in detail. Rich dynamical phenomena including revived incoherent states are found. Different types of partial synchronous states are characterized. We further investigate the phenomenon of revived incoherent states in a different view by modifying the model to a system composed of two interacting subpopulations of phase oscillators. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 31 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[3]  
BUCK J, 1976, SCI AM, V234, P74
[4]   SYNCHRONOUS RHYTHMIC FLASHING OF FIREFLIES .2. [J].
BUCK, J .
QUARTERLY REVIEW OF BIOLOGY, 1988, 63 (03) :265-289
[5]   Collective chaos and period-doubling bifurcation in globally coupled phase oscillators [J].
Cheng, Hongyan ;
Guo, Shuangjian ;
Dai, Qionglin ;
Li, Haihong ;
Yang, Junzhong .
NONLINEAR DYNAMICS, 2017, 89 (03) :2273-2281
[6]   AMPLITUDE EXPANSIONS FOR INSTABILITIES IN POPULATIONS OF GLOBALLY-COUPLED OSCILLATORS [J].
CRAWFORD, JD .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) :1047-1084
[7]   Modeling walker synchronization on the Millennium Bridge [J].
Eckhardt, Bruno ;
Ott, Edward ;
Strogatz, Steven H. ;
Abrams, Daniel M. ;
McRobie, Allan .
PHYSICAL REVIEW E, 2007, 75 (02)
[8]   Synchronization in networks of mobile oscillators [J].
Fujiwara, Naoya ;
Kurths, Juergen ;
Diaz-Guilera, Albert .
PHYSICAL REVIEW E, 2011, 83 (02)
[9]   Paths to synchronization on complex networks [J].
Gomez-Gardenes, Jesus ;
Moreno, Yamir ;
Arenas, Alex .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)
[10]   Explosive Synchronization Transitions in Scale-Free Networks [J].
Gomez-Gardenes, Jesus ;
Gomez, Sergio ;
Arenas, Alex ;
Moreno, Yamir .
PHYSICAL REVIEW LETTERS, 2011, 106 (12)