Adverse Outcomes Prediction for Congenital Heart Surgery: A Machine Learning Approach

被引:31
作者
Bertsimas, Dimitris [1 ,2 ]
Zhuo, Daisy [3 ,4 ]
Dunn, Jack [3 ,4 ]
Levine, Jordan [3 ,4 ]
Zuccarelli, Eugenio [1 ,2 ]
Smyrnakis, Nikos [1 ]
Tobota, Zdzislaw [5 ]
Maruszewski, Bohdan [5 ]
Fragata, Jose [6 ,7 ]
Sarris, George E. [8 ]
机构
[1] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
[2] MIT, Sloan Sch Management, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Alexandria Hlth, Cambridge, MA USA
[4] Alexandria Hlth, Providence, RI USA
[5] Childrens Mem Hlth Inst, Dept Pediat Cardiothorac Surg, Warsaw, Poland
[6] Hosp Santa Marta, Lisbon, Portugal
[7] Nova Univ, Lisbon, Portugal
[8] Athens Heart Surg Inst, Kifissias Ave 2, Athens 15125, Greece
关键词
artificial intelligence; congenital heart surgery; outcomes; statistics-risk analysis; modeling; statistics-survival analysis; CARDIAC-SURGERY; RISK ADJUSTMENT; MORTALITY; SOCIETY; OPERATIONS; MORBIDITY; SCORE;
D O I
10.1177/21501351211007106
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Risk assessment tools typically used in congenital heart surgery (CHS) assume that various possible risk factors interact in a linear and additive fashion, an assumption that may not reflect reality. Using artificial intelligence techniques, we sought to develop nonlinear models for predicting outcomes in CHS. Methods: We built machine learning (ML) models to predict mortality, postoperative mechanical ventilatory support time (MVST), and hospital length of stay (LOS) for patients who underwent CHS, based on data of more than 235,000 patients and 295,000 operations provided by the European Congenital Heart Surgeons Association Congenital Database. We used optimal classification trees (OCTs) methodology for its interpretability and accuracy, and compared to logistic regression and state-of-the-art ML methods (Random Forests, Gradient Boosting), reporting their area under the curve (AUC or c-statistic) for both training and testing data sets. Results: Optimal classification trees achieve outstanding performance across all three models (mortality AUC = 0.86, prolonged MVST AUC = 0.85, prolonged LOS AUC = 0.82), while being intuitively interpretable. The most significant predictors of mortality are procedure, age, and weight, followed by days since previous admission and any general preoperative patient risk factors. Conclusions: The nonlinear ML-based models of OCTs are intuitively interpretable and provide superior predictive power. The associated risk calculator allows easy, accurate, and understandable estimation of individual patient risks, in the theoretical framework of the average performance of all centers represented in the database. This methodology has the potential to facilitate decision-making and resource optimization in CHS, enabling total quality management and precise benchmarking initiatives.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 28 条
[21]   RACHS-ANZ: A Modified Risk Adjustment in Congenital Heart Surgery Model for Outcome Surveillance in Australia and New Zealand [J].
McSharry, Brent ;
Straney, Lahn ;
Alexander, Janet ;
Gentles, Tom ;
Winlaw, David ;
Beca, John ;
Millar, Johnny ;
Shann, Frank ;
Wilkins, Barry ;
Numa, Andrew ;
Stocker, Christian ;
Erickson, Simon ;
Slater, Anthony .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (09)
[22]   Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks [J].
Nilsson, Johan ;
Ohlsson, Mattias ;
Thulin, Lars ;
Hoeglund, Peter ;
Nashef, Samer A. M. ;
Brandt, Johan .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2006, 132 (01) :12-U31
[23]   The Society of Thoracic Surgeons Congenital Heart Surgery Database Mortality Risk Model: Part 1-Statistical Methodology [J].
O'Brien, Sean M. ;
Jacobs, Jeffrey P. ;
Pasquali, Sara K. ;
Gaynor, J. William ;
Karamlou, Tara ;
Welke, Karl F. ;
Filardo, Giovanni ;
Han, Jane M. ;
Kim, Sunghee ;
Shahian, David M. ;
Jacobs, Marshall L. .
ANNALS OF THORACIC SURGERY, 2015, 100 (03) :1054-1062
[24]   An empirically based tool for analyzing mortality associated with congenital heart surgery [J].
O'Brien, Sean M. ;
Clarke, David R. ;
Jacobs, Jeffrey P. ;
Jacobs, Marshall L. ;
Lacour-Gayet, Francois G. ;
Pizarro, Christian ;
Welke, Karl F. ;
Maruszewski, Bohdan ;
Tobota, Zdzislaw ;
Miller, Weldon J. ;
Hamilton, Leslie ;
Peterson, Eric D. ;
Mavroudis, Constantine ;
Edwards, Fred H. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2009, 138 (05) :1139-1153
[25]   The Quest for Precision Medicine: Unmeasured Patient Factors and Mortality After Congenital Heart Surgery [J].
Pasquali, Sara K. ;
Gaies, Michael ;
Banerjee, Mousumi ;
Zhang, Wenying ;
Donohue, Janet ;
Russell, Mark ;
Gaynor, J. William .
ANNALS OF THORACIC SURGERY, 2019, 108 (06) :1889-1894
[26]   Impact of Patient Characteristics on Hospital-Level Outcomes Assessment in Congenital Heart Surgery [J].
Pasquali, Sara K. ;
Jacobs, Marshall L. ;
O'Brien, Sean M. ;
He, Xia ;
Gaynor, J. William ;
Gaies, Michael G. ;
Peterson, Eric D. ;
Hirsch-Romano, Jennifer C. ;
Mayer, John E. ;
Jacobs, Jeffrey P. .
ANNALS OF THORACIC SURGERY, 2015, 100 (03) :1071-1077
[27]   Improving Risk Adjustment for Mortality After Pediatric Cardiac Surgery: The UK PRAiS2 Model [J].
Rogers, Libby ;
Brown, Katherine L. ;
Franklin, Rodney C. ;
Ambler, Gareth ;
Anderson, David ;
Barron, David J. ;
Crowe, Sonya ;
English, Kate ;
Stickley, John ;
Tibby, Shane ;
Tsang, Victor ;
Utley, Martin ;
Witter, Thomas ;
Pagel, Christina .
ANNALS OF THORACIC SURGERY, 2017, 104 (01) :211-219
[28]  
Spray Thomas L, 2017, Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, V20, P49, DOI 10.1053/j.pcsu.2016.09.014