Deep Learning Algorithms Improve Automated Identification of Chagas Disease Vectors

被引:34
作者
Khalighifar, Ali [1 ,2 ]
Komp, Ed [3 ]
Ramsey, Janine M. [4 ]
Gurgel-Goncalves, Rodrigo [5 ]
Peterson, A. Townsend [1 ,2 ]
机构
[1] Univ Kansas, Biodivers Inst, Lawrence, KS 66045 USA
[2] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA
[3] Univ Kansas, Informat & Telecommun Technol Ctr, Lawrence, KS 66045 USA
[4] Inst Nacl Salud Publ, Ctr Reg Invest Salud Publ, Tapachula, Chiapas, Mexico
[5] Univ Brasilia, Fac Med, Brasilia, DF, Brazil
关键词
Chagas disease; TensorFlow; deep learning; Triatominae; automated species identification; NEURAL-NETWORKS; TRIATOMINAE; SYSTEMATICS;
D O I
10.1093/jme/tjz065
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Vector-borne Chagas disease is endemic to the Americas and imposes significant economic and social burdens on public health. In a previous contribution, we presented an automated identification system that was able to discriminate among 12 Mexican and 39 Brazilian triatomine (Hemiptera: Reduviidae) species from digital images. To explore the same data more deeply using machine-learning approaches, hoping for improvements in classification, we employed TensorFlow, an open-source software platform for a deep learning algorithm. We trained the algorithm based on 405 images for Mexican triatomine species and 1,584 images for Brazilian triatomine species. Our system achieved 83.0 and 86.7% correct identification rates across all Mexican and Brazilian species, respectively, an improvement over comparable rates from statistical classifiers (80.3 and 83.9%, respectively). Incorporating distributional information to reduce numbers of species in analyses improved identification rates to 95.8% for Mexican species and 98.9% for Brazilian species. Given the 'taxonomic impediment' and difficulties in providing entomological expertise necessary to control such diseases, automating the identification process offers a potential partial solution to crucial challenges.
引用
收藏
页码:1404 / 1410
页数:7
相关论文
共 23 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Chagas disease: a new worldwide challenge [J].
Coura, Jose Rodrigues ;
Vinas, Pedro Albajar .
NATURE, 2010, 465 (7301) :S6-S7
[3]  
Dayhoff JE, 2001, CANCER, V91, P1615, DOI 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO
[4]  
2-L
[5]   Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm [J].
de Carvalho, Marcelo R. ;
Bockmann, Flavio A. ;
Amorim, Dalton S. ;
Brandao, Carlos Roberto F. ;
de Vivo, Mario ;
de Figueiredo, Jose L. ;
Britski, Heraldo A. ;
de Pinna, Mario C. C. ;
Menezes, Naercio A. ;
Marques, Fernando P. L. ;
Papavero, Nelson ;
Cancello, Eliana M. ;
Crisci, Jorge V. ;
McEachran, John D. ;
Schelly, Robert C. ;
Lundberg, John G. ;
Gill, Anthony C. ;
Britz, Ralf ;
Wheeler, Quentin D. ;
Stiassny, Melanie L. J. ;
Parenti, Lynne R. ;
Page, Larry M. ;
Wheeler, Ward C. ;
Faivovich, Julian ;
Vari, Richard P. ;
Grande, Lance ;
Humphries, Chris J. ;
DeSalle, Rob ;
Ebach, Malte C. ;
Nelson, Gareth J. .
EVOLUTIONARY BIOLOGY, 2007, 34 (3-4) :140-143
[6]   Are We Losing the Science of Taxonomy? [J].
Drew, Lisa W. .
BIOSCIENCE, 2011, 61 (12) :942-946
[7]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188
[8]   The role of wing geometric morphometrics in the identification of sandflies within the subgenus Lutzomyia [J].
Giordani, B. F. ;
Andrade, A. J. ;
Galati, E. A. B. ;
Gurgel-Goncalves, R. .
MEDICAL AND VETERINARY ENTOMOLOGY, 2017, 31 (04) :373-380
[9]   Automated identification of insect vectors of Chagas disease in Brazil and Mexico: the Virtual Vector Lab [J].
Gurgel-Goncalves, Rodrigo ;
Komp, Ed ;
Campbell, Lindsay P. ;
Khalighifar, Ali ;
Mellenbruch, Jarrett ;
Mendonca, Vagner Jose ;
Owens, Hannah L. ;
de la Cruz Felix, Keynes ;
Peterson, A. Townsend ;
Ramsey, Janine M. .
PEERJ, 2017, 5
[10]   Geographic Distribution of Chagas Disease Vectors in Brazil Based on Ecological Niche Modeling [J].
Gurgel-Goncalves, Rodrigo ;
Galvao, Cleber ;
Costa, Jane ;
Peterson, A. Townsend .
JOURNAL OF TROPICAL MEDICINE, 2012, 2012