A review of different catalytic systems for dry reforming of methane: Conventional catalysis-alone and plasma-catalytic system

被引:84
作者
Shi, Cong [1 ]
Wang, Sha [1 ]
Ge, Xiang [2 ]
Deng, Shengxiang [1 ]
Chen, Bin [1 ]
Shen, Jun [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Inst Energy & Power Engn, Shanghai 201620, Peoples R China
[2] East China Univ Sci & Technol, Key Lab Coal Gasificat & Energy Chem Engn, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Dry reforming of methane; Catalytic system; Conventional catalysis-alone system; Plasma-catalytic system; DIELECTRIC BARRIER DISCHARGE; METAL-SUPPORT INTERACTION; SYNTHESIS GAS-PRODUCTION; PD BIMETALLIC CATALYSTS; MULTI-MEMBRANES MODULE; NI-PT CATALYSTS; CARBON-DIOXIDE; PARTIAL OXIDATION; HYDROGEN-PRODUCTION; COAL PYROLYSIS;
D O I
10.1016/j.jcou.2021.101462
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Dry reforming of methane (DRM) uses methane (CH4) and carbon dioxide (CO2) as raw materials to produce syngas, which has unique economic and environmental benefits. However, DRM reaction still faces the disadvantages of catalyst sintering deactivation and carbon formation. In this paper, the research progress of different DRM catalytic systems is reviewed. The conventional catalysis-alone system, plasma-catalytic system and some other catalytic systems are discussed. The key factors affecting the performance evaluation of the catalyst in the conventional catalysis-alone system were given. In particular, whether the plasma-catalytic system can achieve higher conversion than the conventional catalysis-alone system has become the focus of attention. For this reason, the reactor structure, discharge mode and the combination with catalyst were discussed. The mechanism of plasma-catalyst interaction was discussed through literature review. In addition, the possibility of other applications of DRM plasma-catalytic system is also considered. Finally, the advantages and disadvantages of conventional catalysis-alone system and plasma-catalytic system are compared. Some other catalytic systems, such as catalytic membrane reactor and solar driven methane reforming, are also introduced. Considering the research status of DRM, we can further improve the conversion and energy conversion efficiency by improving the DRM catalyst and optimizing the design of plasma reactor.
引用
收藏
页数:19
相关论文
共 267 条
[21]  
Bromberg L., 2001, FUEL CHEM DIVISION A
[22]   Methane dry reforming over boron nitride interface-confined and LDHs-derived Ni catalysts [J].
Bu, Kankan ;
Kuboon, Sanchai ;
Deng, Jiang ;
Li, Hongrui ;
Yan, Tingting ;
Chen, Guorong ;
Shi, Liyi ;
Zhang, Dengsong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 252 :86-97
[23]   Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor [J].
Butterworth, T. ;
Elder, R. ;
Allen, R. .
CHEMICAL ENGINEERING JOURNAL, 2016, 293 :55-67
[24]   Effect of CeO2 on the catalytic performance of Ni/Al2O3 for autothermal reforming of methane [J].
Cai, Xiulan ;
Dong, Xinfa ;
Lin, Weiming .
JOURNAL OF NATURAL GAS CHEMISTRY, 2008, 17 (01) :98-102
[25]   An in situ DRIFTS mechanistic study of CeO2-catalyzed acetylene semihydrogenation reaction [J].
Cao, Tian ;
You, Rui ;
Zhang, Xuanyu ;
Chen, Shilong ;
Li, Dan ;
Zhang, Zhenhua ;
Huang, Weixin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (14) :9659-9670
[26]   Kinetic and Stability Studies of Ru/La2O3 Used in the Dry Reforming of Methane [J].
Carrara, C. ;
Munera, J. ;
Lombardo, E. A. ;
Cornaglia, L. M. .
TOPICS IN CATALYSIS, 2008, 51 (1-4) :98-106
[27]   Syngas production via dry reforming of methane over CeO2 modified Ni/Al2O3 catalysts [J].
Chein, Rei-Yu ;
Fung, Wen-You .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (28) :14303-14315
[28]   Review of plasma catalysis on hydrocarbon reforming for hydrogen production-Interaction, integration, and prospects [J].
Chen, Hsin Liang ;
Lee, How Ming ;
Chen, Shiaw Huei ;
Chao, Yu ;
Chang, Moo Been .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 85 (1-2) :1-9
[29]   Tailoring performance of Co-Pt/MgO-Al2O3 bimetallic aerogel catalyst for methane oxidative carbon dioxide reforming: Effect of Pt/Co ratio [J].
Chen, Lin ;
Huang, Qingyu ;
Wang, Yuchang ;
Xiao, Hui ;
Liu, Weifeng ;
Zhang, Duchao ;
Yang, Tianzu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (36) :19878-19889
[30]   Development of coking-resistant Ni-based catalyst for partial oxidation and CO2-reforming of methane to syngas [J].
Chen, P ;
Zhang, HB ;
Lin, GD ;
Tsai, KR .
APPLIED CATALYSIS A-GENERAL, 1998, 166 (02) :343-350