Levy processes in semisimple Lie groups and stability of stochastic flows

被引:3
作者
Liao, M [1 ]
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
关键词
Levy processes; semisimple Lie groups; stochastic flows;
D O I
10.1090/S0002-9947-98-01730-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic stability of stochastic flows;In compact spaces induced by Levy processes in semisimple Lie groups. It is shown that the Lyapunov exponents can be determined naturally in terms of root structure of the Lie group and there is an open subset whose complement has a positive codimension such that,after a random rotation, each of its connected components is shrunk to a single moving point exponentially under the flow.
引用
收藏
页码:501 / 522
页数:22
相关论文
共 12 条
[1]  
APPLEBAUM D, 1993, J MATH KYOTO U, V33, P1105
[3]  
Carverhill A., 1985, Stochastics, V14, P273, DOI 10.1080/17442508508833343
[4]  
ELWORTHY KD, 1989, LECT NOTES MATH, V1362, P276
[5]   THE FURSTENBERG BOUNDARY, CONTRACTION PROPERTIES AND CONVERGENCE THEOREMS [J].
GUIVARCH, Y ;
RAUGI, A .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (02) :187-242
[6]  
Helgason S., 1979, Differential geometry, Lie groups and symmetric spaces
[7]  
HUNT G. A., 1956, Trans. Am. Math. Soc., V81, P264, DOI 10.2307/1992917
[8]  
Ikeda N., 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[9]   STOCHASTIC FLOWS ON THE BOUNDARIES OF SL(N,R) [J].
LIAO, M .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 96 (02) :261-281
[10]  
LIAO M, 1995, P S PURE MATH, V57, P575