A New Support Vector Machine Model Based on Improved Imperialist Competitive Algorithm for Fault Diagnosis of Oil-immersed Transformers

被引:38
作者
Zhang, Yiyi [1 ]
Wei, Hua [1 ]
Liao, Ruijin [2 ]
Wang, Youyuan [1 ,2 ]
Yang, Lijun [2 ]
Yan, Chunyu [3 ]
机构
[1] Guangxi Univ, Guangxi Key Lab Power Syst Optimizat & Energy Tec, Guangxi, Peoples R China
[2] Chongqing Univ China, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing, Peoples R China
[3] China Elect Power Res Inst, Beijing, Peoples R China
关键词
Power transformer; Fault diagnosis; Dissolved gases analysis; Support vector machine; Improved imperialistic competitive algorithm; Cross validation; Classification; POWER TRANSFORMERS; FUZZY-LOGIC; SVM; TEMPERATURE; CLASSIFIER; SYSTEM;
D O I
10.5370/JEET.2017.12.2.830
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Support vector machine (SVM) is introduced as an effective fault diagnosis technique based on dissolved gases analysis (DGA) for oil-immersed transformers with maximum generalization ability; however, the applicability of the SVM is highly affected due to the difficulty of selecting the SVM parameters appropriately. Therefore, a novel approach combing SVM with improved imperialist competitive algorithm (IICA) for fault diagnosis of oil-immersed transformers was proposed in the paper. The improved ICA, which is proved to be an effective optimization approach, is employed to optimize the parameters of SVM. Cross validation and normalizations were applied in the training processes of SVM and the trained SVM model with the optimized parameters was established for fault diagnosis of oil-immersed transformers. Three classification benchmark sets were studied based on particle swarm optimization SVM (PSOSVM) and IICASVM with four multiple classification schemes to select the best scheme for transformer fault diagnosis. The results show that the proposed model can obtain higher diagnosis accuracy than other methods. The comparisons confirm that the proposed model is an effective approach for classification problems.
引用
收藏
页码:830 / 839
页数:10
相关论文
共 31 条
[1]   A Review of Dissolved Gas Analysis Measurement and Interpretation Techniques [J].
Abu Bakar, Norazhar ;
Abu-Siada, A. ;
Islam, S. .
IEEE ELECTRICAL INSULATION MAGAZINE, 2014, 30 (03) :39-49
[2]   Dissolved gas analysis of transformers using fuzzy logic approach [J].
Aghaei, J. ;
Gholami, A. ;
Shayanfar, H. A. ;
Dezhamkhooy, A. .
EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, 2010, 20 (05) :630-638
[3]  
[Anonymous], 1999, 60599 IEC
[4]  
[Anonymous], NATURE STATISTI810
[5]  
[Anonymous], 1993, LIFE TIME EVALUATION, P39
[6]  
[Anonymous], IEEE T POWER SYST
[7]  
[Anonymous], 2008, C57104 IEEE
[8]  
Atashpaz-Gargari E, 2007, IEEE C EVOL COMPUTAT, P4661, DOI 10.1109/cec.2007.4425083
[9]   Toward an optimal SVM classification system for hyperspectral remote sensing images [J].
Bazi, Yakoub ;
Melgani, Farid .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3374-3385
[10]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)