Evaluating statistical learning methods for cell type classification and feature selection using RNA-seq data

被引:0
作者
Chen, Hao [1 ]
机构
[1] Univ Tennessee, Hlth Sci Ctr, Dept Pharmacol, Memphis, TN 38106 USA
关键词
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
P26
引用
收藏
页数:1
相关论文
共 50 条
[31]   COMSE: analysis of single-cell RNA-seq data using community detection-based feature selection [J].
Luo, Qinhuan ;
Chen, Yaozhu ;
Lan, Xun .
BMC BIOLOGY, 2024, 22 (01)
[32]   Emerging deep learning methods for single-cell RNA-seq data analysis [J].
Jie Zheng ;
Ke Wang .
Quantitative Biology, 2019, 7 (04) :247-254
[33]   Statistical analysis of RNA-seq data at scale [J].
Leek, Jeff T. .
GENETIC EPIDEMIOLOGY, 2015, 39 (07) :563-563
[34]   Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering [J].
Wu, Zhijin ;
Wu, Hao .
GENOME BIOLOGY, 2020, 21 (01)
[35]   Accounting for cell type hierarchy in evaluating single cell RNA-seq clustering [J].
Zhijin Wu ;
Hao Wu .
Genome Biology, 21
[36]   Accurate feature selection improves single-cell RNA-seq cell clustering [J].
Su, Kenong ;
Yu, Tianwei ;
Wu, Hao .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
[37]   scFSNN: a feature selection method based on neural network for single-cell RNA-seq data [J].
Minjiao Peng ;
Baoqin Lin ;
Jun Zhang ;
Yan Zhou ;
Bingqing Lin .
BMC Genomics, 25
[38]   scFSNN: a feature selection method based on neural network for single-cell RNA-seq data [J].
Peng, Minjiao ;
Lin, Baoqin ;
Zhang, Jun ;
Zhou, Yan ;
Lin, Bingqing .
BMC GENOMICS, 2024, 25 (01)
[39]   Using Supervised Learning Methods for Gene Selection in RNA-Seq Case-Control Studies [J].
Wenric, Stephane ;
Shemirani, Ruhollah .
FRONTIERS IN GENETICS, 2018, 9
[40]   Cell-type-aware analysis of RNA-seq data [J].
Jin, Chong ;
Chen, Mengjie ;
Lin, Dan-Yu ;
Sun, Wei .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (04) :253-261