Finite-element wavelets on manifolds

被引:8
|
作者
Nguyen, H [1 ]
Stevenson, R [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
关键词
finite elements; wavelets; Riesz bases; vanishing moments; boundary integral equations;
D O I
10.1093/imanum/23.1.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct locally supported, continuous wavelets on manifolds Gamma that are given as the closure of a disjoint union of general smooth parametric images of an n-simplex. The wavelets are proven to generate Riesz bases for Sobolev spaces H-s (Gamma) when s is an element of (-1, 3/2), if not limited by the global smoothness of Gamma. These results generalize the findings from Dahmen & Stevenson (1999) SIAM J. Numer. Anal., 37, 319-352, where it was assumed that each parametrization has a constant Jacobian determinant. The wavelets can be arranged to satisfy the cancellation property of, in principle, any order, except for wavelets with supports that extend to different patches, which generally satisfy the cancellation property of only order 1.
引用
收藏
页码:149 / 173
页数:25
相关论文
共 50 条
  • [1] On computing transports in finite-element models
    Sidorenko, D.
    Danilov, S.
    Wang, Q.
    Huerta-Casas, A.
    Schroeter, J.
    OCEAN MODELLING, 2009, 28 (1-3) : 60 - 65
  • [2] THE ILU METHOD FOR FINITE-ELEMENT DISCRETIZATIONS
    SAUTER, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 36 (01) : 91 - 106
  • [3] Geometric separators for finite-element meshes
    Miller, GL
    Teng, SH
    Thurston, W
    Vavasis, SA
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02) : 364 - 386
  • [4] Model Uncertainty in Finite-Element Analysis: Bayesian Finite Elements
    Haukaas, T.
    Gardoni, P.
    JOURNAL OF ENGINEERING MECHANICS, 2011, 137 (08) : 519 - 526
  • [5] A finite-element ocean model:: principles and evaluation
    Danilov, S
    Kivman, G
    Schröter, J
    OCEAN MODELLING, 2004, 6 (02) : 125 - 150
  • [6] IDENTIFICATION OF FINITE-ELEMENT MODELS IN STRUCTURAL DYNAMICS
    CAPECCHI, D
    VESTRONI, F
    ENGINEERING STRUCTURES, 1993, 15 (01) : 21 - 30
  • [7] THEORETICAL FORMULATIONS FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS
    LI, LY
    BETTESS, P
    BULL, JW
    BOND, T
    APPLEGARTH, I
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (10): : 857 - 868
  • [8] Poly-Spline Finite-Element Method
    Schneider, Teseo
    Dumas, Jeremie
    Gao, Xifeng
    Botsch, Mario
    Panozzo, Daniele
    Zorin, Denis
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (03):
  • [9] ON PRECONDITIONING FOR FINITE-ELEMENT EQUATIONS ON IRREGULAR GRIDS
    RAMAGE, A
    WATHEN, AJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (03) : 909 - 921
  • [10] Finite-Element Approach to Camera Modelling and Calibration
    Reznicek, J.
    Luhmann, T.
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (1-2): : 1 - 17