The stability of the familly of A2-type arrangements

被引:6
作者
Abe, Takuro [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
来源
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY | 2006年 / 46卷 / 03期
关键词
D O I
10.1215/kjm/1250281752
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a necessary and sufficient condition for the stability and the freeness of the family of A2-type arrangements. Moreover, we determine explicitly when the normalization of the sheafification of its module of reduced logarithmic vector fields is isomorphic to T-p2(-2).
引用
收藏
页码:617 / 636
页数:20
相关论文
共 13 条
[1]   ARRANGEMENTS OF HYPERPLANES AND VECTOR-BUNDLES ON P(N) [J].
DOLGACHEV, I ;
KAPRANOV, M .
DUKE MATHEMATICAL JOURNAL, 1993, 71 (03) :633-664
[2]   STABLE REFLEXIVE SHEAVES [J].
HARTSHORNE, R .
MATHEMATISCHE ANNALEN, 1980, 254 (02) :121-176
[3]   The module of logarithmic p-forms of a locally free arrangement [J].
Mustata, M ;
Schenck, HK .
JOURNAL OF ALGEBRA, 2001, 241 (02) :699-719
[4]  
OKONEK C., 1980, PROGR MATH, V3
[5]  
Orlik P., 1992, GRUNDLEHREN MATH WIS, V300
[6]   Deformations of Coxeter hyperplane arrangements [J].
Postnikov, A ;
Stanley, RP .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2000, 91 (1-2) :544-597
[7]   Elementary modifications and line configurations in P2 [J].
Schenck, HK .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (03) :447-462
[8]   A rank two vector bundle associated to a three arrangement, and its Chern polynomial [J].
Schenck, HK .
ADVANCES IN MATHEMATICS, 2000, 149 (02) :214-229
[9]  
Silvotti R, 1997, MATH RES LETT, V4, P645
[10]   A FORMULA FOR THE CHARACTERISTIC POLYNOMIAL OF AN ARRANGEMENT [J].
SOLOMON, L ;
TERAO, H .
ADVANCES IN MATHEMATICS, 1987, 64 (03) :305-325