Adjacency preservers on invertible hermitian matrices I

被引:8
作者
Orel, Marko [1 ,2 ,3 ]
机构
[1] Univ Primorska, FAMNIT, Glagoljaska 8, Koper 6000, Slovenia
[2] IMFM, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Primorska, IAM, Muzejski Trg 2, Koper 6000, Slovenia
关键词
Adjacency preserver; Core; Finite field; Hermitian matrix; Rank; Petersen graph; MAPPINGS; MAPS;
D O I
10.1016/j.laa.2014.10.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fundamental theorem of geometry of hermitian matrices characterizes all bijective maps on the space of all hermitian matrices, which preserve adjacency in both directions. In this and subsequent paper we characterize maps on the set of all invertible hermitian matrices over a finite field, which preserve adjacency in one direction. In this first paper it is shown that maps that preserve adjacency on the set of all invertible hermitian matrices over a finite field are necessarily bijective, so the corresponding graph on invertible hermitian matrices, where edges are defined by the adjacency relation, is a core. Besides matrix theory, the proof relies on results from several other mathematical areas, including spectral and chromatic graph theory, and finite geometry. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 128
页数:30
相关论文
共 57 条
[1]  
[Anonymous], WILEY INTERSCIENCE S
[2]  
[Anonymous], 1981, STARTING UNIT CIRCLE
[3]  
[Anonymous], 1989, ERGEBNISSE MATH IHRE
[4]  
[Anonymous], 1983, Encyclopedia Math. Appl.
[5]  
[Anonymous], 2001, ALGEBRAIC GRAPH THEO, DOI DOI 10.1007/978-1-4613-0163-9
[6]  
Beukenhout F., 1995, HDB INCIDENCE GEOMET, P27
[7]  
Biggs N., 1974, CAMBRIDGE TRACTS MAT, V67
[8]   CASUALITY GROUP IN FINITE SPACE-TIME [J].
BLASI, AA ;
ZECCA, A ;
GALLONE, F ;
GORINI, V .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1972, A 10 (01) :19-+
[9]   HERMITIAN VARIETIES IN A FINITE PROJECTIVE SPACE PG(N,Q2) [J].
BOSE, RC ;
CHAKRAVA.IM .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (06) :1161-&
[10]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6