Multivariate Gaussian approximations on Markov chaoses

被引:8
作者
Campese, Simon [1 ]
Nourdin, Ivan [2 ]
Peccati, Giovanni [2 ]
Poly, Guillaume [3 ]
机构
[1] Univ Roma Tor Vergata, I-00173 Rome, Italy
[2] Univ Luxembourg, Luxembourg, Luxembourg
[3] Univ Rennes 1, F-35014 Rennes, France
关键词
Markov diffusion generator; Fourth Moment Theorem; multivariate normal approximations; CENTRAL LIMIT-THEOREMS; MULTIPLE; INTEGRALS;
D O I
10.1214/16-ECP4615
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a version of the multidimensional Fourth Moment Theorem for chaotic random vectors, in the general context of diffusion Markov generators. In addition to the usual componentwise convergence and unlike the infinite-dimensional Ornstein-Uhlenbeck generator case, another moment-type condition is required to imply joint convergence of of a given sequence of vectors.
引用
收藏
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 2012, CAMBRIDGE TRACTS MAT
[2]   GENERALIZATION OF THE NUALART-PECCATI CRITERION [J].
Azmoodeh, Ehsan ;
Malicet, Dominique ;
Mijoule, Guillaume ;
Poly, Guillaume .
ANNALS OF PROBABILITY, 2016, 44 (02) :924-954
[3]   Fourth Moment Theorems for Markov diffusion generators [J].
Azmoodeh, Ehsan ;
Campese, Simon ;
Poly, Guillaume .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2341-2359
[4]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[5]  
Bakry D., 2014, GRUND MATH WISS, V348
[6]   CHAOS OF A MARKOV OPERATOR AND THE FOURTH MOMENT CONDITION [J].
Ledoux, M. .
ANNALS OF PROBABILITY, 2012, 40 (06) :2439-2459
[7]   Squared chaotic random variables: New moment inequalities with applications [J].
Malicet, Dominique ;
Nourdin, Ivan ;
Peccati, Giovanni ;
Poly, Guillaume .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (02) :649-670
[8]  
Nourdin I., 2010, Interdiscip. Math. Sci., P207, DOI 10.1142/9789814277266_0014
[9]   ASYMPTOTIC INDEPENDENCE OF MULTIPLE WIENER-ITO INTEGRALS AND THE RESULTING LIMIT LAWS [J].
Nourdin, Ivan ;
Rosinski, Jan .
ANNALS OF PROBABILITY, 2014, 42 (02) :497-526
[10]   Multivariate normal approximation using Stein's method and Malliavin calculus [J].
Nourdin, Ivan ;
Peccati, Giovanni ;
Reveillac, Anthony .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01) :45-58