Multi-stage Event-triggered Model Predictive Control for Automated Trajectory Drilling

被引:1
作者
Morabito, Bruno [1 ,3 ]
Koegel, Markus [1 ,3 ]
Blasi, Svenja [1 ]
Klemme, Vanja [2 ]
Hansen, Christian [2 ]
Hoehn, Oliver [2 ]
Findeisen, Rolf [1 ,3 ]
机构
[1] Otto von Guericke Univ, Lab Syst Theory & Automat Control, Magdeburg, Germany
[2] Baker Hughes Co, Houston, TX USA
[3] Int Max Planck Res Sch IMPRS Adv Methods Proc & S, Magdeburg, Germany
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
关键词
Model Predictive Control; Multi-stage; Event-triggered; Drilling Automation;
D O I
10.1016/j.ifacol.2020.12.2421
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In upstream Oil and Gas operations a well is drilled following a planned trajectory. The trajectory is designed to avoid hard formations and other wells while minimizing drilling time. The uncertainty of the environment, e.g. unknown rock hardness, effects negatively the efficiency of operation: drilling time increases due to frequent corrective control actions that must be taken to counteract disturbances and risk increases since process constraints may be violated. This paper proposes an event-triggered multi-stage model predictive control that aims at tackling both challenges. The event-triggering strategy tries to minimize the number of control actions sent to the actuators, while the multi-stage strategy improves constraints satisfaction despite uncertainties. The method is tested in simulation where unknown changes in rock hardness are considered. In comparison to a standard model predictive control approach, we show that using the combined event-triggered and multi-stage approach we improve constraints satisfaction and decrease the number of control actions. Copyright (C) 2020 The Authors.
引用
收藏
页码:9478 / 9483
页数:6
相关论文
共 11 条
[1]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[2]  
[Anonymous], 2002, P 21 BEN M SYST CONT
[3]  
Bayliss M., 2015, SPE IADC DRILL C EXH, DOI 10.2118/173009- MS
[4]   Robust Event-Triggered MPC for Constrained Linear Discrete-Time Systems with Guaranteed Average Sampling Rate [J].
Brunner, Florian D. ;
Heemels, W. P. M. H. ;
Allgoewer, Frank .
IFAC PAPERSONLINE, 2015, 48 (23) :117-122
[5]  
Heemels WPMH, 2012, IEEE DECIS CONTR P, P3270, DOI 10.1109/CDC.2012.6425820
[6]   Predictive control, embedded cyberphysical systems and systems of systems - A perspective [J].
Lucia, Sergio ;
Koegel, Markus ;
Zometa, Pablo ;
Quevedo, Daniel E. ;
Findeisen, Rolf .
ANNUAL REVIEWS IN CONTROL, 2016, 41 :193-207
[7]   Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty [J].
Lucia, Sergio ;
Finkler, Tiago ;
Engell, Sebastian .
JOURNAL OF PROCESS CONTROL, 2013, 23 (09) :1306-1319
[8]   Scenario-based Model Predictive Control: Recursive Feasibility and Stability [J].
Maiworm, Michael ;
Baethge, Tobias ;
Findeisen, Rolf .
IFAC PAPERSONLINE, 2015, 48 (08) :50-56
[9]  
Panchal N., 2010, IFAC P VOLUMES, V43, P92
[10]  
Rawlings J., 2009, MODEL PREDICTIVE CON