Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system

被引:166
作者
Zhang, Yihan [1 ,2 ]
Qin, Wei [1 ]
Lu, Xiaochan [1 ]
Xu, Jason [2 ]
Huang, Haigen [2 ]
Bai, Haipeng [1 ]
Li, Song [1 ]
Lin, Shuo [1 ,2 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Chem Biol & Biotechnol, Lab Chem Genom, Shenzhen 518055, Peoples R China
[2] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA 90095 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
PRECISE; VARIANTS; RICE; GENE; DNA;
D O I
10.1038/s41467-017-00175-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise genetic modifications in model animals are essential for biomedical research. Here, we report a programmable "base editing" system to induce precise base conversion with high efficiency in zebrafish. Using cytidine deaminase fused to Cas9 nickase, up to 28% of site-specific single-base mutations are achieved in multiple gene loci. In addition, an engineered Cas9-VQR variant with 5'-NGA PAM specificities is used to induce base conversion in zebrafish. This shows that Cas9 variants can be used to expand the utility of this technology. Collectively, the targeted base editing system represents a strategy for precise and effective genome editing in zebrafish.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] CRISPR-cas9 genome editing delivery systems for targeted cancer therapy
    Ghaemi, Asma
    Bagheri, Elnaz
    Abnous, Khalil
    Taghdisi, Seyed Mohammad
    Ramezani, Mohammad
    Alibolandi, Mona
    LIFE SCIENCES, 2021, 267
  • [42] CRISPR-Cas9 mediated genome editing in rice, advancements and future possibilities
    Mazumdar S.
    Quick W.P.
    Bandyopadhyay A.
    Indian Journal of Plant Physiology, 2016, 21 (4): : 437 - 445
  • [43] CRISPR-Cas9 Genome Editing Allows Generation of the Mouse Lung in a Rat
    Wen, Bingqiang
    Li, Enhong
    Wang, Guolun
    Kalin, Timothy R.
    Gao, Dengfeng
    Lu, Peixin
    Kalin, Tanya V.
    Kalinichenko, Vladimir V.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2024, 210 (02) : 167 - 177
  • [44] Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase
    Xu, Tao
    Li, Yongchao
    Shi, Zhou
    Hemme, Christopher L.
    Li, Yuan
    Zhu, Yonghua
    Van Nostrand, Joy D.
    He, Zhili
    Zhou, Jizhong
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (13) : 4423 - 4431
  • [46] Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish
    Albadri, Shahad
    Del Bene, Filippo
    Revenu, Celine
    METHODS, 2017, 121 : 77 - 85
  • [47] In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors
    Song, Beomjong
    Kang, Chan Young
    Han, Jun Hee
    Kano, Masanobu
    Konnerth, Arthur
    Bae, Sangsu
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 2477 - 2485
  • [48] Harnessing CRISPR-Cas9 for Genome Editing in Streptococcus pneumoniae D39V
    Synefiaridou, Dimitra
    Veening, Jan-Willem
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2021, 87 (06) : 1 - 15
  • [49] Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides
    Ding, Xiao
    Seebeck, Timothy
    Feng, Yongmei
    Jiang, Yanfang
    Davis, Gregory D.
    Chen, Fuqiang
    CRISPR JOURNAL, 2019, 2 (01): : 51 - 63
  • [50] Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing
    Gong Shaohua
    Li Na
    Tang Bo
    ACTA CHIMICA SINICA, 2020, 78 (07) : 634 - 641