Engel groups derived from hypergroups

被引:10
|
作者
Ameri, R. [1 ]
Mohammadzadeh, E. [2 ]
机构
[1] Univ Tehran, Sch Math Stat & Comp Sci, Tehran, Iran
[2] Payame Noor Univ, Fac Sci, Dept Math, Tehran, Iran
关键词
D O I
10.1016/j.ejc.2014.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with hypergroups, as a generalization of classical groups. An important tool in the theory of hyperstructures is the fundamental relation, which brings us into the classical algebra. In this paper we introduce the smallest equivalence relation xi* on a given hypergroup H such that the quotient H/xi*, the set of all equivalence classes, is an Engel group. We will characterize Engle groups via strongly regular relations and several results on the topic are presented. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 197
页数:7
相关论文
共 50 条
  • [11] Engel groups with an identity
    Shumyatsky, Pavel
    Tortora, Antonio
    Tota, Maria
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (01) : 1 - 7
  • [12] Engel groups III
    Collins, Donald J.
    Juhasz, Arye
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 174 (01) : 73 - 91
  • [13] ENGEL ELEMENTS IN GROUPS
    NEWMAN, MF
    NICKEL, W
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1994, 96 (01) : 39 - 45
  • [14] A connection between fuzzy Γ-hypergroups and Γ-groups
    Firouzkouhi, N.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (01): : 207 - 214
  • [15] [FIA]B-GROUPS AND HYPERGROUPS
    HARTMANN, K
    MONATSHEFTE FUR MATHEMATIK, 1980, 89 (01): : 9 - 17
  • [16] Hypergroups derived from random walks on some infinite graphs
    Ikkai, Tomohiro
    Sawada, Yusuke
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02): : 321 - 353
  • [17] Hypergroups derived from random walks on some infinite graphs
    Tomohiro Ikkai
    Yusuke Sawada
    Monatshefte für Mathematik, 2019, 189 : 321 - 353
  • [18] Hypergroups associated to harmonic NA groups
    Di Blasio, B
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 : 209 - 216
  • [19] 2 THEOREMS ON ENGEL GROUPS
    GRUENBERG, KW
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (03): : 377 - 380
  • [20] An Engel condition for orderable groups
    Shumyatsky P.
    Tortora A.
    Tota M.
    Bulletin of the Brazilian Mathematical Society, New Series, 2015, 46 (3) : 461 - 468