A Haar wavelet method for angularly discretising the Boltzmann transport equation

被引:16
作者
Adigun, Babatunde J. [1 ]
Buchan, Andrew G. [2 ]
Adam, Alexandros [1 ]
Dargaville, Steven [1 ]
Goffin, Mark A. [1 ]
Pain, Christopher C. [1 ]
机构
[1] Imperial Coll London, Appl Modelling & Computat Grp, Dept Earth Sci & Engn, London SW7 2AZ, England
[2] Queen Mary Univ London, Sch Engn & Mat Sci, Div Engn Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
Radiation transport; Boltzmann transport equation; Haar wavelet; C5MOX; Adaptivity; PARTIAL-DIFFERENTIAL-EQUATIONS; NUMERICAL-SIMULATION; COLLOCATION METHOD; EXPANSION; MODEL;
D O I
10.1016/j.pnucene.2018.05.023
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A novel, hierarchical Haar wavelet basis is introduced and used to discretise the angular dimension of the Boltzmann transport equation. This is used in conjunction with a finite element subgrid scale method. This combination is then validated using two steady-state radiation transport problems, namely a 2D dogleg-duct shielding problem and the 2D C5MOX OECD/NEA benchmark. It is shown that the scheme has many similarities to a traditional equal weighted discrete ordinates (S-n) angular discretisation, but the strong motivation for our hierarchical Haar wavelet method is the potential for adapting in angle in a simple fashion through elimination of redundant wavelets. Initial investigations of this adaptive approach are presented for a shielding and criticality eigenvalue example. It is shown that a 60% reduction in the number of angles needed on most spatial nodes - and rising up to 90% on nodes located in high streaming areas - can be attained without adversely affecting the accuracy of the solution.
引用
收藏
页码:295 / 309
页数:15
相关论文
共 40 条
[1]  
Aboufadel E., 1999, Discovering Wavelets
[2]   Adaptive Haar wavelets for the angular discretisation of spectral wave models [J].
Adam, Alexandros ;
Buchan, Andrew G. ;
Piggott, Matthew D. ;
Pain, Christopher C. ;
Hill, Jon ;
Goffin, Mark A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 :521-538
[3]   Fast iterative methods for discrete-ordinates particle transport calculations [J].
Adams, ML ;
Larsen, EW .
PROGRESS IN NUCLEAR ENERGY, 2002, 40 (01) :3-159
[4]   Adaptive multiresolution approach for solution of hyperbolic PDEs [J].
Alves, MA ;
Cruz, P ;
Mendes, A ;
Magalhaes, FD ;
Pinho, FT ;
Oliveira, PJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (36) :3909-3928
[5]   Wavelets on the sphere: implementation and approximations [J].
Antoine, JP ;
Demanet, L ;
Jacques, L ;
Vandergheynst, P .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :177-200
[6]  
Antoine JP, 1999, APPL COMPUT HARMON A, V7, P262, DOI 10.1006/acha.1998.0272
[7]   Self-adaptive spherical wavelets for angular discretizations of the Boltzmann transport equation [J].
Buchan, A. G. ;
Pain, C. C. ;
Eaton, M. D. ;
Smedley-Stevenson, R. P. ;
Goddard, A. J. H. .
NUCLEAR SCIENCE AND ENGINEERING, 2008, 158 (03) :244-263
[8]   An efficient space-angle subgrid scale discretisation of the neutron transport equation [J].
Buchan, A. G. ;
Pain, C. C. .
ANNALS OF NUCLEAR ENERGY, 2016, 94 :440-450
[9]   A POD reduced order model for resolving angular direction in neutron/photon transport problems [J].
Buchan, A. G. ;
Calloo, A. A. ;
Goffin, M. G. ;
Dargaville, S. ;
Fang, F. ;
Pain, C. C. ;
Navon, I. M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 296 :138-157
[10]   A sub-grid scale finite element agglomeration multigrid method with application to the Boltzmann transport equation [J].
Buchan, A. G. ;
Pain, C. C. ;
Umpleby, A. P. ;
Smedley-Stevenson, R. P. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (03) :318-342