Constructing layer/tunnel biphasic Na0.6Fe0.04Mn0.96O2 enables simultaneous kinetics enhancement and phase transition suppression for high power/energy density sodium-ion full cell

被引:39
作者
Sun, Zhihao [2 ]
Peng, Bo [1 ]
Zhao, Liping [1 ]
Li, Jie [1 ]
Shi, Liang [2 ]
Zhang, Genqiang [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, CAS Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
关键词
Sodium-ion battery; Biphasic compound; NaxMnO2; Cathode; Full cell; LAYERED CATHODE; BATTERY; PERFORMANCE; COMPOSITE; VOLTAGE; SUBSTITUTION; NA0.44MNO2; ELECTRODE; ANODE; IMPACT;
D O I
10.1016/j.ensm.2021.05.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manganese-based layered compounds NaxMnO2 (0<x <= 1) have been extensively investigated as promising cathode candidates for sodium-ion batteries (SIBs) on account of low toxicity, low cost and high electrochemical activity. However, the unsatisfactory cycling performance of layered structure and low theoretical capacity of tunnel phase cannot meet the requirement of practical applications. Herein, we present the facile Fe doping induced formation of layer/tunnel biphasic compound, i.e. Na0.6Fe0.04Mn0.96O2, which can integrate the advantages of high specific capacity originating from layered structure and excellent cycling/rate performance deriving from tunnel structure, and thus delivers remarkable performance with a high specific capacity of 184.9 mAh g(-1) at 40 mA g(-1) and an impressive capacity retention of 83.1% after 300 cycles at 1000 mA g(-1). The underlying mechanism is deciphered by in-situ X-ray diffraction test, where the eliminated P2-O2 phase transition in biphasic compound could be the possible origin. Importantly, the sodium-ion full cell based on Na0.6Fe0.04Mn0.96O2 and commercial hard carbon delivers excellent cycling performance and high energy density of 186.2 Wh kg(-1)/60.3 W kg(-1). This work not only provides a promising Ni/Co-free cathode candidate with outstanding performance, but also introduces a feasible rationale to effectively enhance performance for layered oxide cathode.
引用
收藏
页码:320 / 328
页数:9
相关论文
共 65 条
[1]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[2]   P2-NaxCoyMn1-yO2 (y=0, 0.1) as Cathode Materials in Sodium-Ion Batteries-Effects of Doping and Morphology To Enhance Cycling Stability [J].
Bucher, Nicolas ;
Hartung, Steffen ;
Franklin, Joseph B. ;
Wise, Anna M. ;
Lim, Linda Y. ;
Chen, Han-Yi ;
Weker, Johanna Nelson ;
Toney, Michael F. ;
Srinivasan, Madhavi .
CHEMISTRY OF MATERIALS, 2016, 28 (07) :2041-2051
[3]  
Cao X., ACS ENERGY LETT
[4]   A manganese-hydrogen battery with potential for grid-scale energy storage [J].
Chen, Wei ;
Li, Guodong ;
Pei, Allen ;
Li, Yuzhang ;
Liao, Lei ;
Wang, Hongxia ;
Wan, Jiayu ;
Liang, Zheng ;
Chen, Guangxu ;
Zhang, Hao ;
Wang, Jiangyan ;
Cui, Yi .
NATURE ENERGY, 2018, 3 (05) :428-435
[5]   Impact of Na2MoO4 nanolayers autogenously formed on tunnel-type Na0.44MnO2 [J].
Choi, Ji Ung ;
Jo, Jae Hyeon ;
Jo, Chang-Heum ;
Cho, Min Kyoung ;
Park, Yun Ji ;
Jin, Yongcheng ;
Yashiro, Hitoshi ;
Myung, Seung-Taek .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) :13522-13530
[6]   Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies [J].
Clement, Raphaele J. ;
Billaud, Juliette ;
Armstrong, A. Robert ;
Singh, Gurpreet ;
Rojo, Teofilo ;
Bruce, Peter G. ;
Grey, Clare P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3240-3251
[7]   High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode [J].
Deng, Jianqiu ;
Luo, Wen-Bin ;
Lu, Xiao ;
Yao, Qingrong ;
Wang, Zhongmin ;
Liu, Hua-Kun ;
Zhou, Huaiying ;
Dou, Shi-Xue .
ADVANCED ENERGY MATERIALS, 2018, 8 (05)
[8]   Cystallographic Evolution of P2 Na2/3Fe0.4Mn0.6O2 Electrodes during Electrochemical Cycling [J].
Dose, Wesley M. ;
Sharma, Neeraj ;
Pramudita, James C. ;
Kimpton, Justin A. ;
Gonzalo, Elena ;
Huon Han, Man ;
Rojo, Teofilo .
CHEMISTRY OF MATERIALS, 2016, 28 (17) :6342-6354
[9]   Fundamentals of inorganic solid-state electrolytes for batteries [J].
Famprikis, Theodosios ;
Canepa, Pieremanuele ;
Dawson, James A. ;
Islam, M. Saiful ;
Masquelier, Christian .
NATURE MATERIALS, 2019, 18 (12) :1278-1291
[10]   Revealing the Critical Role of Titanium in Layered Manganese-Based Oxides toward Advanced Sodium-Ion Batteries via a Combined Experimental and Theoretical Study [J].
Fang, Tiancheng ;
Guo, Shaohua ;
Jiang, Kezhu ;
Zhang, Xiaoyu ;
Wang, Di ;
Feng, Yuzhang ;
Zhang, Xueping ;
Wang, Peng ;
He, Ping ;
Zhou, Haoshen .
SMALL METHODS, 2019, 3 (04)