Solvent Effects on Kinetic Mechanisms of Self-Assembly by Peptide Amphiphiles via Molecular Dynamics Simulations

被引:61
作者
Fu, Iris W. [1 ]
Markegard, Cade B. [1 ]
Nguyen, Hung D. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
SPONTANEOUS FIBRIL FORMATION; SECONDARY STRUCTURE; DRUG-DELIVERY; MEAN FORCE; NANOFIBERS; PROTEINS; MODEL; PH; BIOMATERIALS; TEMPERATURE;
D O I
10.1021/la503399x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Peptide amphiphiles are known to form a variety of distinctive self-assembled nanostructures (including cylindrical nanofibers in hydrogels) dependent upon the solvent conditions. Using a novel coarse-grained model, large-scale molecular dynamics simulations are performed on a system of 800 peptide amphiphiles (sequence, palmitoyl-Val(3)Ala(3)Glu(3)) to elucidate kinetic mechanisms of molecular assembly as a function of the solvent conditions. The assembly process is found to occur via a multistep process with transient intermediates that ultimately leads to the stabilized nanostructures including open networks of beta-sheets, cylindrical nanofibers, and elongated micelles. Different kinetic mechanisms are compared in terms of peptide secondary structures, solvent-accessible surface area, radius of gyration, relative shape anisotropy, intra/intermolecular interactions, and aggregate size dynamics to provide insightful information for the design of functional biomaterials.
引用
收藏
页码:315 / 324
页数:10
相关论文
共 71 条
[1]   STUDIES IN MOLECULAR DYNAMICS .1. GENERAL METHOD [J].
ALDER, BJ ;
WAINWRIGHT, TE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (02) :459-466
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]   Responsive polymers in controlled drug delivery [J].
Bajpai, A. K. ;
Shukla, Sandeep K. ;
Bhanu, Smitha ;
Kankane, Sanjana .
PROGRESS IN POLYMER SCIENCE, 2008, 33 (11) :1088-1118
[4]   Slow Release and Delivery of Antisense Oligonucleotide Drug by Self-Assembled Peptide Amphiphile Nanofibers [J].
Bulut, Selma ;
Erkal, Turan S. ;
Toksoz, Sila ;
Tekinay, Ayse B. ;
Tekinay, Turgay ;
Guler, Mustafa O. .
BIOMACROMOLECULES, 2011, 12 (08) :3007-3014
[5]   Triple Stimulus-Responsive Polypeptide Nanoparticles That Enhance Intratumoral Spatial Distribution [J].
Callahan, Daniel J. ;
Liu, Wenge ;
Li, Xinghai ;
Dreher, Matthew R. ;
Hassouneh, Wafa ;
Kim, Minkyu ;
Marszalek, Piotr ;
Chilkoti, Ashutosh .
NANO LETTERS, 2012, 12 (04) :2165-2170
[6]   Redox modulated hydrogelation of a self-assembling short peptide amphiphile [J].
Cao ChangHai ;
Cao MeiWen ;
Fan HaiMing ;
Xia DaoHong ;
Xu Hai ;
Lu, Jian R. .
CHINESE SCIENCE BULLETIN, 2012, 57 (33) :4296-4303
[7]   Amphiphilic peptides and their cross-disciplinary role as building blocks for nanoscience [J].
Cavalli, Silvia ;
Albericio, Fernando ;
Kros, Alexander .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :241-263
[8]   Enzyme-Directed Assembly of a Nanoparticle Probe in Tumor Tissue [J].
Chien, Miao-Ping ;
Thompson, Matthew P. ;
Barback, Christopher V. ;
Ku, Ti-Hsuan ;
Hall, David J. ;
Gianneschi, Nathan C. .
ADVANCED MATERIALS, 2013, 25 (26) :3599-3604
[9]   Mechanism of the pH-Controlled Self-Assembly of Nanofibers from Peptide Amphiphiles [J].
Cote, Yoann ;
Fu, Iris W. ;
Dobson, Eric T. ;
Goldberger, Joshua E. ;
Nguyen, Hung D. ;
Shen, Jana K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (29) :16272-16278
[10]   Self-Assembly of Peptide Amphiphiles: From Molecules to Nanostructures to Biomaterials [J].
Cui, Honggang ;
Webber, Matthew J. ;
Stupp, Samuel I. .
BIOPOLYMERS, 2010, 94 (01) :1-18