An optimized nanoparticle separator enabled by electron beam induced deposition

被引:15
作者
Fowlkes, J. D. [1 ]
Doktycz, M. J. [2 ]
Rack, P. D. [1 ,3 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanofabricat Res Lab, Oak Ridge, TN 37381 USA
[2] Oak Ridge Natl Lab, Biosci Div, Biol & Nanoscale Syst Grp, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
关键词
RESOLUTION; GROWTH; NANOPILLARS; FABRICATION; SIMULATION;
D O I
10.1088/0957-4484/21/16/165303
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.
引用
收藏
页数:9
相关论文
共 32 条
[1]   Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective [J].
Botman, A. ;
Mulders, J. J. L. ;
Hagen, C. W. .
NANOTECHNOLOGY, 2009, 20 (37)
[2]   In situ control of the focused-electron-beam-induced deposition process [J].
Bret, T ;
Utke, I ;
Bachmann, A ;
Hoffmann, P .
APPLIED PHYSICS LETTERS, 2003, 83 (19) :4005-4007
[3]   Electron range effects in focused electron beam induced deposition of 3D nanostructures [J].
Bret, Tristan ;
Utke, Ivo ;
Hoffmann, Patrik ;
Abourida, Maurice ;
Doppelt, Pascal .
MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) :1482-1486
[4]   Proximity effects in free-standing EBID structures [J].
Burbridge, Daniel J. ;
Gordeev, Sergey N. .
NANOTECHNOLOGY, 2009, 20 (28)
[5]   Strategies for the immobilization of nanoparticles using electron beam induced deposition [J].
Burbridge, Daniel J. ;
Crampin, Simon ;
Viau, Guillaume ;
Gordeev, Sergey N. .
NANOTECHNOLOGY, 2008, 19 (44)
[6]   Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition [J].
Fernandez-Pacheco, A. ;
De Teresa, J. M. ;
Cordoba, R. ;
Ibarra, M. R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (05)
[7]   Domain wall conduit behavior in cobalt nanowires grown by focused electron beam induced deposition [J].
Fernandez-Pacheco, A. ;
De Teresa, J. M. ;
Cordoba, R. ;
Ibarra, M. R. ;
Petit, D. ;
Read, D. E. ;
O'Brien, L. ;
Lewis, E. R. ;
Zeng, H. T. ;
Cowburn, R. P. .
APPLIED PHYSICS LETTERS, 2009, 94 (19)
[8]   Direct-write deposition with a focused electron beam [J].
Fischer, M. ;
Wanzenboeck, H. D. ;
Gottsbachner, J. ;
Mueller, S. ;
Brezna, W. ;
Schramboeck, M. ;
Bertagnolli, E. .
MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) :784-787
[9]   Microarrays of biomimetic cells formed by the controlled synthesis of carbon nanofiber membranes [J].
Fletcher, BL ;
Hullander, ED ;
Melechko, AV ;
McKnight, TE ;
Klein, KL ;
Hensley, DK ;
Morrell, JL ;
Simpson, ML ;
Doktycz, MJ .
NANO LETTERS, 2004, 4 (10) :1809-1814
[10]   High-vacuum versus ''environmental'' electron beam deposition [J].
Folch, A ;
Servat, J ;
Esteve, J ;
Tejada, J ;
Seco, M .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (04) :2609-2614