Approximation by generalized Stancu type integral operators involving Sheffer polynomials

被引:0
作者
Mursaleen, M. [1 ]
Rahman, Shagufta [1 ]
Ansari, Khursheed J. [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
Szasz operators; modulus of continuity; rate of convergence; Weighted space; Sheffer polynomials; JAKIMOVSKI-LEVIATAN OPERATORS; KANTOROVICH-TYPE OPERATORS; STATISTICAL APPROXIMATION; SZASZ-OPERATORS; SUMMABILITY; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we give a generalization of integral operators which involves Sheffer polynomials introduced by Sucu and Buyukyazici. We obtain approximation properties of our operators with the help of the universal Korovkin's theorem and study convergence properties by using modulus of continuity, the second order modulus of smoothness and Peetre's K-functional. We have also established Voronovskaja type asymptotic formula. Furthermore, we study the convergence of these operators in weighted spaces of functions on the positive semi-axis and estimate the approximation by using weighted modulus of continuity.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 29 条
[1]   Quantitative q-Voronovskaya and q-Gruss-Voronovskaya-type results for q-Szasz operators [J].
Acar, Tuncer .
GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (04) :459-468
[2]   Approximation by modified Szasz-Durrmeyer operators [J].
Acar, Tuncer ;
Ulusoy, Gulsum .
PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (01) :64-75
[3]   Asymptotic Formulas for Generalized Szasz-Mirakyan Operators [J].
Acar, Tuncer .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 :233-239
[4]  
Altomare F., 1994, Korovkin-Type Approximation Theory and Its Applications, V17, P266
[5]  
[Anonymous], 1995, Stud. Univ. Babes-Bolyai Math
[6]   A generalization of Szasz-Mirakyan operators based on q-integers [J].
Aral, Ali .
MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (9-10) :1052-1062
[7]   Approximation by Modified Integral Type Jakimovski-Leviatan Operators [J].
Atakut, Cigdem ;
Buyukyazici, Ibrahim .
FILOMAT, 2016, 30 (01) :29-39
[8]   Λ2-Weighted statistical convergence and Korovkin and Voronovskaya type theorems [J].
Braha, Naim L. ;
Loku, Valdete ;
Srivastava, H. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :675-686
[9]   A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean [J].
Braha, Naim L. ;
Srivastava, H. M. ;
Mohiuddine, S. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 :162-169
[10]  
Ditzian Z., 1987, Springer Series in Computational Mathematics